Abstract

Thermal management of lithium-ion batteries is an important design consideration for electric vehicles (EVs) as it affects the performance and life of the batteries. Given the thermal vulnerability of lithium-ion batteries when subjected to high charging and discharging rates, effective cooling designs for battery packs are necessary. The current work proposes a cooling design with better heat dissipation and maximum temperature difference (ΔTmax). The design improves the reference H-type battery thermal management system (BTMS). In this system, an open triangular pitch is formed at the top of the cell enclosure, and the bottom part of the cell enclosure is tapered from both sides and toward the center. The effect of taper height, pitch height, pitch opening dimensions, cooling channel spacing, inlet air velocity, ambient temperature, and discharge rate on the system's performance was investigated using computational fluid dynamics (CFD) simulation. The experiment was conducted based on the proposed design, and the results were used to verify the numerical model. The results are discussed using the flow streamlines, velocity contours, temperature contours, cooling channel velocity plots, and temperature plots. The results show that the maximum Tavg and the ΔTmax of the battery pack were reduced by 1.34 °C (3.6%) and 1.58 °C (93.5%), respectively, compared to the reference H type.

References

1.
Hu
,
X.
,
Zou
,
C.
,
Zhang
,
C.
, and
Li
,
Y.
,
2017
, “
Technological Developments in Batteries: A Survey of Principal Roles, Types, and Management Needs
,”
IEEE Power Energy Mag.
,
15
(
5
), pp.
20
31
.
2.
Yue
,
Q. L.
,
He
,
C. X.
,
Wu
,
M. C.
, and
Zhao
,
T. S.
,
2021
, “
Advances in Thermal Management Systems for Next-Generation Power Batteries
,”
Int. J. Heat Mass Transfer
,
181
, p.
121853
.
3.
Singh
,
G.
, and
Wu
,
H.
,
2022
, “
Effect of Different Inlet/Outlet Port Configurations on the Thermal Management of Prismatic Li-ion Batteries
,”
ASME J. Heat Mass Trans.
,
144
(
11
), p.
112901
.
4.
Swamy
,
K. A.
, and
Verma
,
S.
,
2024
, “
Experimental and Numerical Investigation for Optimization of a Hybrid Battery Thermal Management System Based on Phase Change Material and Air Convection
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
12
), p.
121004
.
5.
Parsons
,
K. K.
, and
Mackin
,
T. J.
,
2017
, “
Design and Simulation of Passive Thermal Management System for Lithium-Ion Battery Packs on an Unmanned Ground Vehicle
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1
), p.
011012
.
6.
Han
,
T.
,
Khalighi
,
B.
,
Yen
,
E. C.
, and
Kaushik
,
S.
,
2019
, “
Li-Ion Battery Pack Thermal Management: Liquid Versus Air Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
2
), p.
021009
.
7.
Masthan Vali
,
P. S. N.
, and
Murali
,
G.
,
2023
, “
Battery Thermal Management System on Trapezoidal Battery Pack With Liquid Cooling System Utilizing Phase Change Material
,”
ASME J. Heat Mass Transfer
,
146
(
1
), p.
011003
.
8.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2019
, “
Application of Jets and Vortex Generators to Improve Air-Cooling and Temperature Uniformity in a Simple Battery Pack
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
2
), p.
021005
.
9.
Sharma
,
D. K.
, and
Prabhakar
,
A.
,
2023
, “
Experimental and Numerical Investigation of Thermal Performance of an Air-Cooled Battery Module Under High Ambient Temperature Conditions
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
9
), p.
091006
.
10.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2022
, “
A Review of Thermal Runaway Prevention and Mitigation Strategies for Lithium-Ion Batteries
,”
Energy Convers. Manage. X
,
16
(
2022
), p.
100310
.
11.
Sharma
,
D. K.
, and
Prabhakar
,
A.
,
2021
, “
A Review on Air Cooled and Air Centric Hybrid Thermal Management Techniques for Li-Ion Battery Packs in Electric Vehicles
,”
J. Energy Storage
,
41
, p.
102885
.
12.
Singh
,
L. K.
,
Mishra
,
G.
,
Sharma
,
A. K.
, and
Gupta
,
A. K.
,
2021
, “
A Numerical Study on Thermal Management of a Lithium-Ion Battery Module via Forced Convective Air Cooling
,”
Int. J. Refrig.
,
131
, pp.
218
234
.
13.
Singh
,
L. K.
,
Gupta
,
A. K.
, and
Sharma
,
A. K.
,
2022
, “
Hybrid Thermal Management System for a Lithium-Ion Battery Module: Effect of Cell Arrangement, Discharge Rate, Phase Change Material Thickness and Air Velocity
,”
J. Energy Storage
,
52
, p.
104907
.
14.
Kirad
,
K.
, and
Chaudhari
,
M.
,
2020
, “
Design of Cell Spacing in Lithium-Ion Battery Module for Improvement in Cooling Performance of the Battery Thermal Management System
,”
J. Power Sources
,
481
, p.
229016
.
15.
Padalkar
,
A. B.
,
Chaudhari
,
M. B.
, and
Funde
,
A. M.
,
2023
, “
Computational Investigation for Reduction in Auxiliary Energy Consumption With Different Cell Spacing in Battery Pack
,”
J. Energy Storage
,
65
, p.
107265
.
16.
Hasan
,
H. A.
,
Togun
,
H.
,
Mohammed
,
H. I.
,
Abed
,
A. M.
, and
Homod
,
R. Z.
,
2023
, “
CFD Simulation of Effect Spacing Between Lithium-Ion Batteries by Using Flow Air Inside the Cooling Pack
,”
J. Energy Storage
,
72
(
August
), p.
108631
.
17.
Wang
,
C.
,
Xi
,
H.
, and
Wang
,
M.
,
2022
, “
Investigation on Forced Air-Cooling Strategy of Battery Thermal Management System Considering the Inconsistency of Battery Cells
,”
Appl. Therm. Eng.
,
214
, p.
118841
.
18.
Zhang
,
F.
,
Liu
,
P.
,
He
,
Y.
, and
Li
,
S.
,
2022
, “
Cooling Performance Optimization of Air-Cooling Lithium-ion Battery Thermal Management System Based on Multiple Secondary Outlets and Baffle
,”
J. Energy Storage
,
52
, p.
104678
.
19.
Zhang
,
F.
,
Zhang
,
L.
,
Lin
,
A.
,
Wang
,
P.
, and
Liu
,
P.
,
2022
, “
Multi-Method Collaborative Optimization for Parallel Air Cooling Lithium-Ion Battery Pack
,”
Int. J. Energy Res.
,
46
(
10
), pp.
14318
14333
.
20.
Oyewola
,
O. M.
,
Awonusi
,
A. A.
, and
Ismail
,
O. S.
,
2023
, “
Design Optimization of Air-Cooled Li-Ion Battery Thermal Management System With Step-Like Divergence Plenum for Electric Vehicles
,”
Alex. Eng. J.
,
71
, pp.
631
644
.
21.
Suo
,
Y.
,
Tang
,
C.
, and
Yang
,
H.
,
2023
, “
Optimization Design of the Forced Air-Cooled Battery Thermal Management System With a Stepped Divergence Plenum
,”
J. Energy Storage
,
73
, p.
108904
.
22.
Kebaitse
,
K.
,
Harikrishnan
,
S.
, and
Varghese
,
J.
,
2024
, “
Effect of Sawtooth Wave Distribution Plenum With Linearly Increasing Amplitude on the Performance of Battery Thermal Management System
,”
Int. J. Ambient Energy
,
45
(
1
), p.
2384953
.
23.
Shen
,
X.
,
Cai
,
T.
,
He
,
C.
,
Yang
,
Y.
, and
Chen
,
M.
,
2023
, “
Thermal Analysis of Modified Z-Shaped Air-Cooled Battery Thermal Management System for Electric Vehicles
,”
J. Energy Storage
,
58
, p.
106356
.
24.
Shi
,
Y.
,
Ahmad
,
S.
,
Liu
,
H.
,
Lau
,
K. T.
, and
Zhao
,
J.
,
2021
, “
Optimization of Air-Cooling Technology for LiFePO4 Battery Pack Based on Deep Learning
,”
J. Power Sources
,
497
, p.
229894
.
25.
Wu
,
M. S.
,
2022
, “
Multi-Objective Optimization of U-Type Air-Cooled Thermal Management System for Enhanced Cooling Behavior of Lithium-Ion Battery Pack
,”
J. Energy Storage
,
56
, p.
106004
.
26.
Ma
,
R.
,
Ren
,
Y.
,
Wu
,
Z.
,
Xie
,
S.
,
Chen
,
K.
, and
Wu
,
W.
,
2022
, “
Optimization of an Air Cooled Battery Module With Novel Cooling Channels Based on Silica Cooling Plates
,”
Appl. Therm. Eng.
,
213
, p.
118650
.
27.
Kebaitse
,
K.
,
Harikrishnan
,
S.
, and
Varghese
,
J.
,
2024
, “
Effect of Battery Inclination on the Performance of a Battery Thermal Management System
,”
International Conference on Futuristic Advancements in Materials, Manufacturing and Thermal Sciences
,
Springer Nature
,
Singapore
, pp.
139
149
.
28.
Liu
,
Y.
, and
Zhang
,
J.
,
2019
, “
Design a J-Type Air-Based Battery Thermal Management System Through Surrogate-Based Optimization
,”
Appl. Energy
,
252
, p.
113426
.
29.
Liu
,
Y.
, and
Zhang
,
J.
,
2020
, “
Self-Adapting J-Type Air-Based Battery Thermal Management System via Model Predictive Control
,”
Appl. Energy
,
263
, p.
114640
.
30.
Chen
,
K.
,
Chen
,
Y.
,
She
,
Y.
,
Song
,
M.
,
Wang
,
S.
, and
Chen
,
L.
,
2020
, “
Construction of Effective Symmetrical Air-Cooled System for Battery Thermal Management
,”
Appl. Therm. Eng.
,
166
, p.
114679
.
31.
Zhang
,
F.
,
Yi
,
M.
,
Wang
,
P.
, and
Liu
,
C.
,
2021
, “
Optimization Design for Improving Thermal Performance of T-Type Air-Cooled Lithium-ion Battery Pack
,”
J. Energy Storage
,
44
, p.
103464
.
32.
Luo
,
L.
,
Liu
,
Y.
,
Liao
,
Z.
, and
Zhong
,
J.
,
2023
, “
Optimal Structure Design and Heat Transfer Characteristic Analysis of X-Type Air-Cooled Battery Thermal Management System
,”
J. Energy Storage
,
67
, p.
107681
.
33.
Chen
,
K.
,
Zhang
,
Z.
,
Wu
,
B.
,
Song
,
M.
, and
Wu
,
X.
,
2024
, “
An Air-Cooled System With a Control Strategy for Efficient Battery Thermal Management
,”
Appl. Therm. Eng.
,
236
, p.
121578
.
34.
Manual
,
2009
,
Ansys Fluent 12.0, Theory Guide
,
ANSYS
,
Canonsburg, PA
.
35.
Zhang
,
J.
,
Wu
,
X.
,
Zhou
,
D.
, and
Chen
,
K.
,
2023
, “
Numerical and Experimental Study on Efficient Optimization of Variable Cross-Section Battery Thermal Management Systems Using an Improved Flow Resistance Network Model
,”
Int. J. Heat Mass Transfer
,
218
, p.
124821
.
You do not currently have access to this content.