Graphical Abstract Figure

(i) T-s diagram of novel ORC cycle (ii) Modified evaporator system schematic (iii) Exergy input and Exergy output variations with Tev (iv) PI and network output variations with Tco (v) S/N ratios for net-work output for modified ORC-CHP System (vi) S/N ratios for performance index of modified ORC-CHP System

Graphical Abstract Figure

(i) T-s diagram of novel ORC cycle (ii) Modified evaporator system schematic (iii) Exergy input and Exergy output variations with Tev (iv) PI and network output variations with Tco (v) S/N ratios for net-work output for modified ORC-CHP System (vi) S/N ratios for performance index of modified ORC-CHP System

Close modal

Abstract

Evaluations were conducted using the Taguchi method to optimize a novel triple-tube evaporator-based organic Rankine cycle combined heat and power (ORC-CHP) system. The system replaces traditional ORC evaporators with a triple-tube configuration, featuring hot fluids in the inner annular, normal fluid in the outer annular, and refrigerants R152a, R600a, R32, and isopentane in the inner tube. The effects of net work done, total irreversibility, and exergetic efficiency on the pinch point temperature difference (PPTD), evaporator, and condenser temperature were analyzed using the Taguchi method in minitab 16 software. Results demonstrated the superior performance of R600a with the ORC-CHP system achieving optimal energetic efficiency and performance index (PI) at higher evaporator temperatures. Energetic efficiency is decreased by 9.8%, 10%, 10.6%, and 9.5% for R152a, R600a, R32, and isopentane, respectively, across a PPTD range of 3–10 °C, while the maximum exergetic efficiency of 49.59% was observed for R32 at 45 °C evaporator temperature. The PI value is increased linearly by 3%, 2.98%, 2.8%, and 3.12% for R152a, R32, R600a, and isopentane, respectively, across an evaporative temperature range of 45–65 °C. Taguchi's optimization revealed that evaporator temperature significantly enhances the system performance, with R600a emerging as the most favorable refrigerant. Its scalable design allows for customization, making it adaptable for both small- and large-scale applications. A simple fabrication of the system reduces the maintenance complexity and cost compared to more intricate heat exchanger designs. This study bridges the technological gap in ORC-CHP systems by demonstrating the advantages of a triple-tube evaporator, offering improved efficiency and performance over traditional techniques and contributing to developing advanced low-grade heat recovery systems.

References

1.
Chacartegui
,
R.
,
Sánchez
,
D.
,
Muñoz
,
J. M.
, and
Sánchez
,
T.
,
2009
, “
Alternative ORC Bottoming Cycles for Combined Cycle Power Plants
,”
Energy
,
86
(
10
), pp.
2162
2170
.
2.
Dai
,
Y.
,
Wang
,
J.
, and
Gao
,
L.
,
2009
, “
Parametric Optimization and Comparative Study of Organic Rankine Cycle (ORC) for Low-Grade Waste Heat Recovery
,”
Energy Convers. Manage.
,
50
(
3
), pp.
576
582
.
3.
Schuster
,
A.
,
Karellas
,
S.
,
Kakaras
,
E.
, and
Spliethoff
,
H.
,
2009
, “
Energetic and Economic Investigation of Organic Rankine Cycle Applications
,”
Appl. Therm. Eng.
,
29
(
8–9
), pp.
1809
1817
.
4.
Mago
,
P. J.
,
Chamra
,
L. M.
, and
Somayaji
,
C.
,
2007
, “
Analysis and Optimization of Organic Rankine Cycles
,”
J. Power Energy
,
221
(
3
), pp.
255
263
.
5.
Mago
,
P. J.
,
Chamra
,
L. M.
,
Srinivasan
,
K.
, and
Somayaji
,
C.
,
2008
, “
An Examination of Regenerative Rankine Cycles Using Dry Fluids
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
998
1007
.
6.
Oyewunmi
,
O. A.
,
Kirmse
,
C. J. W.
,
Pantaleo
,
A. M.
, and
Markides
,
C. N.
,
2017
, “
Performance of Working-Fluid Mixtures in ORC-CHP Systems for Different Heat-Demand Segments and Heat-Recovery Temperature Levels
,”
Energy Convers. Manage.
,
148
, pp.
1508
1524
.
7.
Lecompte
,
S.
,
Ameel
,
B.
,
Ziviani
,
D.
,
van den Broek
,
M.
, and
De Paepe
,
M.
,
2014
, “
Exergy Analysis of Zeotropic Mixtures as Working Fluids in Organic Rankine Cycles
,”
Energy Convers. Manage.
,
85
, pp.
727
739
.
8.
Holzindustrie
,
S. T. I. A.
,
2001
, Biomass-Fired CHP Plant Based on an ORC,” Project ORC-STIA-Admont, Admont, Austria, March.
9.
Hueffed
,
A. K.
, and
Mago
,
P. J.
,
2011
, “
Energy, Economic, and Environmental Analysis of Combined Heating and Power-Organic Rankine Cycle and Combined Cooling, Heating, and Power-Organic Rankine Cycle Systems
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
225
(
1
), pp.
24
32
.
10.
Eyerer
,
S.
,
Dawo
,
F.
,
Schifflechner
,
C.
,
Niederdränk
,
A.
,
Spliethoff
,
H.
, and
Wieland
,
C.
,
2022
, “
Experimental Evaluation of an ORC-CHP Architecture Based on Regenerative Preheating for Geothermal Applications
,”
Appl. Energy
,
315
, p.
119057
.
11.
Freeman
,
J.
,
Hellgardt
,
K.
, and
Markides
,
C. N.
,
2015
, “
An Assessment of Solar-Powered Organic Rankine Cycle Systems for Combined Heating and Power in UK Domestic Applications
,”
Appl. Energy
,
138
, pp.
605
620
.
12.
Pernecker
,
G.
, and
Uhlig
,
S.
,
2002
, “
Low-Enthalpy Power Generation With ORC Turbogenerator: The Altheim Project, Upper Austria
,”
GHC Bull.
,
23
(
1
), pp.
26
30
.
13.
Khennich
,
M.
,
Galanis
,
N.
, and
Sorin
,
M.
,
2013
, “
Comparison of Combined Heat and Power Systems Using an Organic Rankine Cycle and a Low-Temperature Heat Source
,”
Int. J. Low-Carbon Technol.
,
8
(
Suppl. 1),
pp.
42
46
.
14.
Peris
,
B.
,
Esbrí
,
J. N.
,
Molés
,
F.
,
González
,
M.
, and
Babiloni
,
A. M.
,
2015
, “
Experimental Characterization of an ORC (Organic Rankine Cycle) for Power and CHP (Combined Heat and Power) Applications From Low-Grade Heat Sources
,”
Energy
,
82
, pp.
269
276
.
15.
Wieland
,
C.
,
Meinel
,
D.
,
Eyerer
,
S.
, and
Spliethoff
,
H.
,
2016
, “
Innovative CHP Concept for ORC and Its Benefit Compared to Conventional Concepts
,”
Appl. Energy
,
183
, pp.
478
490
.
16.
Eyerer
,
S.
,
Dawo
,
F.
,
Wieland
,
C.
, and
Spliethoff
,
H.
,
2020
, “
Advanced ORC Architecture for Geothermal Combined Heat and Power Generation
,”
Energy
,
205
, p.
117967
.
17.
Zhu
,
Y.
,
Li
,
W.
,
Li
,
J.
,
Li
,
H.
,
Wang
,
Y.
, and
Li
,
S.
,
2020
, “
Thermodynamic Analysis and Economic Assessment of Biomass-Fired Organic Rankine Cycle Combined Heat and Power System Integrated With CO2 Capture
,”
Energy Convers. Manage.
,
204
, p.
112310
.
18.
Wang
,
Q.
,
Wu
,
W.
, and
He
,
Z.
,
2019
, “
Thermodynamic Analysis and Optimization of a Novel Organic Rankine Cycle-Based Micro-Scale Cogeneration System Using Biomass Fuel
,”
Energy Convers. Manage.
,
198
, p.
111803
.
19.
Xi
,
H.
,
Li
,
M.
,
Huang
,
Z.
, and
Wang
,
M.
,
2021
, “
Energy, Exergy and Economic Analyses and Performance Assessment of a Trigeneration System for Power, Freshwater and Heat Based on Supercritical Water Oxidation and Organic Rankine Cycle
,”
Energy Convers. Manage.
,
243
, p.
114395
.
20.
Erdeweghe
,
S. V.
,
Bael
,
J. V.
,
Laenen
,
B.
, and
Haeseleer
,
W. D.
,
2019
, “
Optimal Configuration for a Low-Temperature Geothermal CHP Plant Based on Thermoeconomic Optimization
,”
Energy
,
179
, pp.
323
335
.
21.
Pereira
,
J. S.
,
Almeida
,
J.
,
André
,
J. C.
,
Mendes
,
R.
, and
Ribeiro
,
J. B.
,
2021
, “
Modelling and Experimental Validation of the Heat-Transfer Processes of a Direct Vaporization Micro-Scale ORC-Evaporator for Thermal Degradation Risk Assessment
,”
Energy Convers. Manage.
,
238
, p.
114130
.
22.
Pereira
,
J. S.
,
Santos
,
M.
,
Mendes
,
R.
,
André
,
J. C.
, and
Ribeiro
,
J. B.
,
2022
, “
Thermal Degradation Assessment Study of a Direct Vaporization ORC-Based Micro-CHP System Under Close-to-Real Operating Conditions
,”
Appl. Therm. Eng.
,
214
, p.
118878
.
23.
Bagherian
,
M. A.
, and
Mehranzamir
,
K.
,
2020
, “
A Comprehensive Review on Renewable Energy Integration for Combined Heat and Power Production
,”
Energy Convers. Manage.
,
224
, p.
113454
.
24.
Cruz
,
I.
,
Johansson
,
M. T.
, and
Wren
,
J.
,
2022
, “
Assessment of the Potential for Small-Scale CHP Production Using Organic Rankine Cycle (ORC) Systems in Different Geographical Contexts: GHG Emissions Impact and Economic Feasibility
,”
Energy Rep.
,
8
, pp.
7680
7690
.
25.
DeLovato
,
N.
,
Sundarnath
,
K.
,
Cvijovic
,
L.
,
Kota
,
K.
, and
Kuravi
,
S.
,
2019
, “
A Review of Heat Recovery Applications for Solar and Geothermal Power Plants
,”
Renew. Sustain. Energy Rev.
,
114
, p.
109329
.
26.
Teng
,
S. Y.
,
Wang
,
M. W.
,
Xi
,
H.
, and
Wen
,
S. Q.
,
2021
, “
Energy, Exergy, Economic (3E) Analysis, Optimization and Comparison of Different ORC-Based CHP Systems for Waste Heat Recovery
,”
Case Stud. Therm. Eng.
,
28
, p.
101444
.
27.
Villarino
,
Y. T.
,
Rial
,
L. P.
, and
Rodríguez-Abalde
,
Á.
,
2022
, “
Assessment of a Residual Biomass Micro-Combined Heat and Power System Based on an Organic Rankine Cycle Coupled to a Boiler
,”
J. Environ. Manage.
,
301
, p.
113832
.
28.
Peacock
,
J.
,
Huang
,
G.
,
Song
,
J.
, and
Markides
,
C. N.
,
2022
, “
Techno-Economic Assessment of Integrated Spectral-Beam-Splitting Photovoltaic-Thermal (PV-T) and Organic Rankine Cycle (ORC) Systems
,”
Energy Convers. Manage.
,
269
, p.
116071
.
29.
Arabkoohsar
,
A.
, and
Nami
,
H.
,
2019
, “
Thermodynamic and Economic Analyses of a Hybrid Waste-Driven CHP-ORC Plant With Exhaust Heat Recovery
,”
Energy Convers. Manage.
,
187
, pp.
512
522
.
30.
Küçük
,
, and
Kılıç
,
M.
,
2023
, “
Exergoeconomic Analysis and Multi-objective Optimization of ORC Configurations Via Taguchi-Grey Relational Methods
,”
Heliyon
,
9
(
4
).
31.
Ozbektas
,
S.
,
Sungur
,
B.
, and
Topaloğlu
,
B.
,
2023
, “
Numerical Investigation of the Effect of Heat Sinks With Various Fin Geometries on the Performance of a Thermoelectric Generator
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
3
), p.
031004
.
32.
Sara
,
H.
,
Chalet
,
D.
, and
Cormerais
,
M.
,
2018
, “
Different Configurations of Exhaust Gas Heat Recovery in Internal Combustion Engine: Evaluation on Different Driving Cycles Using Numerical Simulations
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041010
.
33.
Young
,
D.
,
Gibson
,
S. C.
, and
Bandhauer
,
T. M.
,
2018
, “
Working Fluid Selection and Technoeconomic Optimization of a Turbocompression Cooling System
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
6
), p.
061017
.
34.
Wang
,
S.
,
Guo
,
Z.
,
Han
,
X.
,
Xu
,
X.
,
Wang
,
Q.
,
Deng
,
S.
, and
Chen
,
G.
,
2019
, “
Experimental Evaluation on Low Global Warming Potential HFO-1336mzz-Z as an Alternative to HCFC-123 and HFC-245fa
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031009
.
35.
F-Chart Software
,
n.d.
, “
EES: Engineering Equation Solver | F-Chart Software
,” Engineering Software, https://fchartsoftware.com/ees/. Accessed July 15, 2023.
36.
Edrisi
,
B. H.
, and
Michaelides
,
E. E.
,
2013
, “
Effect of the Working Fluid on the Optimum Work of Binary-Flashing Geothermal Power Plants
,”
Energy
,
50
, pp.
389
394
.
37.
Chatzopoulou
,
M. A.
, and
Markides
,
C. N.
,
2018
, “
Thermodynamic Optimisation of a High-Electrical Efficiency Integrated Internal Combustion Engine–Organic Rankine Cycle Combined Heat and Power System
,”
Appl. Energy
,
226
, pp.
229
251
.
You do not currently have access to this content.