Abstract

Efficient thermal management constitutes the key to guarantee the power output of electric vehicle power motors under high temperature environments and high load conditions. This study presents an oil cooling structure design aimed at ensuring the efficient operation of motors. The design concept was founded on five cooling structures, namely Parallel Channel (PC), Series Channel (SC), and Composite Series Channel (CSC) with 2, 3, and 4 branches in each pass respectively, and an optimization study was carried out on the external embedded oil cooling structure of stator for automotive permanent magnet synchronous motor (PMSM). The cooling performance and pressure drop from inlet to outlet were analyzed and compared among different oil cooling structures, based on which the CSC with 4 branches was determined as the basis for further optimization. The Performance Evaluation Criteria (PEC) was introduced in the structure evaluation to analyze the impact of channel form and channel dimension on cooling effect. The results of the study demonstrated that Case III (a composite series channel with height of 4 mm and width of 10 mm) was the best structure. Under rated condition, when the flow rate of coolant is 5 lpm, Case III reduces the average temperature of motor to 82.47 °C and the pressure drop to 57.442 kPa, which results in a 2.98% reduction in average temperature and a 19.77% reduction in pressure drop compared with CSC4. The cooling effect under peak power and peak torque conditions was analyzed, and the effectiveness of the structure was validated.

References

1.
Breban
,
S.
,
Dranca
,
M.
,
Chirca
,
M.
,
Pacuraru
,
A. M.
,
Teodosescu
,
P. D.
, and
Oprea
,
C. A.
,
2022
, “
Experimental Tests on a Spoke-Type Permanent Magnets Synchronous Machine for Light Electric Vehicle Application
,”
Appl. Sci-Basel.
,
12
(
3019
), p.
3019
.
2.
Lei
,
S. R.
,
Xin
,
S.
, and
Liu
,
S. X.
,
2022
, “
Separate and Integrated Thermal Management Solutions for Electric Vehicles: A Review
,”
J. Power. Sources
,
550
, p.
232133
.
3.
Gundabattini
,
E.
,
Kuppan
,
R.
,
Solomon
,
D. G.
,
Kalam
,
A.
,
Kothari
,
D. P.
, and
Abu Bakar
,
R.
,
2021
, “
A Review on Methods of Finding Losses and Cooling Methods to Increase Efficiency of Electric Machines
,”
Ain. Shams. Eng. J.
,
12
(
1
), pp.
497
505
.
4.
Luo
,
L.
,
Chang
,
J. J.
,
Wu
,
J. L.
,
Zhu
,
B.
,
Zheng
,
M. Y.
, and
Zhang
,
N.
,
2021
, “
Design and Analysis of a Water-Cooling System in a New Yokeless and Segmented Armature Axial in-Wheel Motor for Electric Vehicles
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
5
), p.
051015
.
5.
Wang
,
W. S.
,
Shang
,
M. Y.
,
Li
,
Y. Z.
,
Yao
,
Z. K.
,
Niu
,
J. Z.
, and
Juan
,
Z.
,
2023
, “
Thermal Performance Analysis of Jet Cooling Method in a High-Power Permanent Magnet Synchronous Motor
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
1
), p.
011006
.
6.
Yang
,
X. F.
,
Fatemi
,
A.
,
Nehl
,
T.
,
Hao
,
L.
,
Zeng
,
W.
, and
Parrish
,
S.
,
2021
, “
Comparative Study of Three Stator Cooling Jackets for Electric Machine of Mild Hybrid Vehicle
,”
IEEE Trans. Ind. Appl.
,
57
(
2
), pp.
1193
1201
.
7.
Yuan
,
Y.
,
Li
,
B.
,
Zhang
,
Z. Y.
,
Gao
,
P.
, and
Li
,
G. D.
,
2024
, “
Calculation of Equivalent Thermal Conductivity of Motor Winding Based on Conductor Distribution
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
5
), p.
051009
.
8.
Fawzal
,
A. S.
,
Cirstea
,
R. M.
,
Woolmer
,
T. J.
,
Dickison
,
M.
,
Blundell
,
M.
, and
Gyftakis
,
K. N.
,
2018
, “
Air Inlet/Outlet Arrangement for Rotor Cooling Application of Axial Flux Pm Machines
,”
Appl. Therm. Eng.
,
130
(
1
), pp.
1520
1529
.
9.
Chen
,
Z. T.
,
Yu
,
Z. J.
,
Fu
,
J.
, and
Yang
,
J. T.
,
2024
, “
Analysis and Design of Air-Heat Pipe Composite Cooling of High Power Density Motor
,”
Appl. Therm. Eng.
,
236
(
Part B
), p.
121495
.
10.
Chang
,
M.
,
Lai
,
B. Z.
,
Wang
,
H.
,
Bai
,
J. Q.
, and
Mao
,
Z. Y.
,
2023
, “
Comprehensive Efficiency Analysis of Air-Cooled Vs Water-Cooled Electric Motor for Unmanned Aerial Vehicle
,”
Appl. Therm. Eng.
,
225
, p.
120226
.
11.
Wang
,
X.
,
Li
,
B.
,
Gerada
,
D.
,
Huang
,
K.
,
Stone
,
I.
,
Worrall
,
S.
, and
Yan
,
Y.
,
2022
, “
A Critical Review on Thermal Management Technologies for Motors in Electric Cars
,”
Appl. Therm. Eng.
,
201
(
Part B
), p.
117758
.
12.
Yang
,
C.
,
Wang
,
H. Z.
,
Niu
,
X. Z.
,
Zhang
,
J.
, and
Yan
,
Y. G.
,
2016
, “
Design and Analysis of Cycling Oil Cooling in Driving Motors for Electric Vehicle Application
,”
IEEE Vehicle Power
,
Hangzhou, China
,
Oct. 17
.
13.
Davin
,
T.
,
Pellé
,
J.
,
Harmand
,
S.
, and
Yu
,
R.
,
2017
, “
Motor Cooling Modeling: An Inverse Method for the Identification of Convection Coefficients
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
041009
.
14.
Mao
,
J. F.
,
Zhang
,
M. L.
,
Jia
,
R. S.
,
Huang
,
C.
,
Chen
,
B. B.
,
Wang
,
Y. C.
, and
Chen
,
H. J.
,
2024
, “
Temperature Analysis of Waveform Water Channel for High-Power Permanent Magnet Synchronous Motor
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
12
), p.
121009
. 12100910.1115/1.4066738
15.
Lee
,
K. H.
,
Cha
,
H. R.
, and
Kim
,
Y. B.
,
2016
, “
Development of an Interior Permanent Magnet Motor Through Rotor Cooling for Electric Vehicles
,”
Appl. Therm. Eng.
,
95
(
1
), pp.
348
356
.
16.
Saleem
,
A.
,
Park
,
M. H.
,
Ambreen
,
T.
, and
Kim
,
S. C.
,
2022
, “
Optimization of Oil Flow Distribution Inside the in-Wheel Motor Assembly of Electric Vehicles for Improved Thermal Performance
,”
Appl. Therm. Eng.
,
201
(
Part A
), p.
117753
.
17.
Wan
,
Z. P.
,
Dong
,
L. J.
,
Wang
,
X. W.
, and
Duan
,
J. C.
,
2023
, “
Design of an Oil-Cooling-System of New Energy Vehicle Drive Motor
,”
Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
,
237
(
12
), pp.
2810
2818
.
18.
Li
,
W.
,
Li
,
Y. S.
,
Li
,
C. B.
,
Wang
,
N. B.
, and
Fu
,
J. D.
,
2023
, “
Incremental Learning Strategy-Assisted Multi-Objective Optimization for an Oil-Water Mixed Cooling Motor
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
12
), p.
121004
.
19.
Wu
,
Y.
, and
Li
,
S. Y. C.
,
2023
, “
Simulation and Investigation of Heat Dissipation of Stator Cooling Structure on Oil-Cooled Motors
,”
Micromotor
,
56
(
2
), pp.
25
30
.
20.
Liu
,
Y. T.
,
Liu
,
G. B.
,
Song
,
J. N.
,
Yang
,
Q. C.
,
Zhao
,
Y. Y.
, and
Li
,
L. S.
,
2023
, “
Effect of Flow Channel Structures and Refrigerants on the Motor Cooling Process of Compressor with Gas Bearings
,”
Int. J. Refrig.
,
152
, pp.
283
292
.
21.
Rogers
,
S. A.
,
2013
,
Fy2012 Advanced Power Electronics and Electric Motors Annual Progress Report
,
EERE Publication and Product Library
,
Washington, DC
.
22.
Борисенко
,
АИ
,
Данько
,
ВГ
, and
Яковлев
,
АИ
,
1985
,
The Air Dynamics and Heat Transfer in the Motor
,
China Machine Press
,
Beijing
, pp.
62
64
.
23.
Chen
,
W. W.
,
Mao
,
Z. Y.
, and
Tian
,
W. L.
,
2024
, “
Water Cooling Structure Design and Temperature Field Analysis of Permanent Magnet Synchronous Motor for Underwater Unmanned Vehicle
,”
Appl. Therm. Eng.
,
240
, p.
122243
.
24.
Rehman
,
Z.
, and
Seong
,
K.
,
2018
, “
Three-D Numerical Thermal Analysis of Electric Motor with Cooling Jacket
,”
Energies
,
11
(
1
), p.
92
.
25.
Staton
,
D.
,
Boglietti
,
A.
, and
Cavagnino
,
A.
,
2005
, “
Solving the More Difficult Aspects of Electric Motor Thermal Analysis in Small and Medium Size Industrial Induction Motors
,”
IEEE Trans. Energy Convers.
,
20
(
3
), pp.
620
628
.
26.
Ball
,
K. S.
,
Farouk
,
B.
, and
Dixit
,
V. C.
,
1989
, “
An Experimental Study of Heat Transfer in a Vertical Annulus with a Rotating Inner Cylinder
,”
Int. J. Heat Mass Transfer
,
32
(
1
), pp.
1517
1527
.
27.
Xypteras
,
J.
, and
Hatziathanassiou
,
V.
,
1999
, “
Thermal Analysis of an Electrical Machine Taking Into Account the Iron Losses and the Deep-Bar Effect
,”
IEEE Trans. Energy Convers.
,
14
(
4
), pp.
996
1003
.
28.
Hatziathanassiou
,
V.
,
Xypteras
,
J.
, and
Archontoulakis
,
G.
,
1994
, “
Electrical-Thermal Coupled Calculation of an Asynchronous Machine
,”
Archiv f. Elektrotechnik
,
77
(
2
), pp.
117
122
.
29.
Park
,
M. H.
, and
Kim
,
S. C.
,
2019
, “
Thermal Characteristics and Effects of Oil Spray Cooling on in-Wheel Motors in Electric Vehicles
,”
Appl. Therm. Eng.
,
152
(
1
), pp.
582
593
.
30.
Sakaki
,
Y.
, and
Imagi
,
S.
,
1981
, “
Relationship among Eddy Current Loss, Frequency, Maximum Flux Density and a New Parameter Concerning the Number of Domain Walls in Polycrystalline and Amorphous Soft Magnetic Materials
,”
IEEE Trans. Magn.
,
17
(
4
), pp.
1478
1480
.
31.
Fakhfakh
,
M. A.
,
Kasem
,
M. H.
,
Tounsi
,
S.
, and
Neji
,
R.
,
2008
, “
Thermal Analysis of a Permanent Magnet Synchronous Motor for Electric Vehicles
,”
J. Asian Electr. Veh.
,
6
(
2
), pp.
1145
1151
.
32.
Volpe
,
G.
,
Popescu
,
M.
,
Marignetti
,
F.
, and
Goss
,
J.
,
2019
, “
AC Winding Losses in Automotive Traction E-Machines: A New Hybrid Calculation Method
,”
IEEE International Electric Machines & Drives Conference
,
San Diego, CA
,
May 12–15
.
33.
Webb
,
R. L.
,
1981
, “
Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
24
(
4
), pp.
715
726
.
34.
Sinha
,
A.
,
Chattopadhyay
,
H.
,
Iyengar
,
A. K.
, and
Biswas
,
G.
,
2016
, “
Enhancement of Heat Transfer in a Fin-Tube Heat Exchanger Using Rectangular Winglet Type Vortex Generators
,”
Int. J. Heat. Mass. Transfer
,
101
, pp.
667
681
.
You do not currently have access to this content.