Abstract

An automotive-type four-cylinder turbocharged common rail direct injection (CRDi) engine has been considered to utilize a higher proportion of biodiesel beyond 20% while effectively addressing the NOx–soot engine performance trade-off with biodiesel, butanol, and petro-diesel fuel blends. Mixed feedstock obtained from Sterculia foetida oil and used palm oil in equal proportions to prepare biodiesel, and three binary and three ternary blends, prepared in different proportions, have been considered. Fuels were prepared with butanol blended with biodiesel and petro-diesel in different proportions. Investigations were carried out at various speed and load conditions similar to idling, urban, and highway drive conditions by varying the main injection timing and boost pressure, keeping other parameters at optimized values. The speed test conditions are chosen from a modified Indian driving cycle to simulate real driving conditions. The results obtained with different blends are compared against engine operation with neat petro-diesel operation. The engine is incorporated with a variable geometry turbine for increasing intake air and an open electronic control unit (ECU) for setting the operating parameters. For facilitating split injections, a dwell period (time between start of pilot and start of main injection) of 27° crank angle (CA) [i.e., with pilot injection timing (PIT) at 28 deg before top dead center (bTDC) and main injection timing (MIT) at 1 deg bTDC], pilot injection quantity (PIQ) of 11%, and fuel injection pressure (FIP) of 61.4 MPa are recommended for the speed and load conditions under consideration and the given engine configuration. Among the tested ternary blends, B20Bu10D70 and B30Bu10D60 showed improvement in NOx and smoke emissions, with low-temperature combustion-like conditions observed. The use of renewable fuels will effectively address UNO's sustainable development goals.

References

1.
Heywood
,
J. B.
,
2018
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
,
New York
.
2.
Dec
,
J. E.
,
1997
, “
A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging
,” SAE Technical Paper No. 970873, pp.
1
30
.
3.
Neely
,
G. D.
,
Sasaki
,
S.
,
Huang
,
Y.
,
Leet
,
J. A.
, and
Stewart
,
D. W.
,
2005
, “
New Diesel Emission Control Strategy to Meet US Tier 2 Emissions Regulations
,” SAE Technical Paper No. 2005-01-1091, pp.
1
13
.
4.
Agarwal
,
A. K.
,
2007
, “
Biofuels (Alcohols and Biodiesel) Applications as Fuels for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
33
(
3
), pp.
233
271
.
5.
Amenaghawon
,
A. N.
,
Omede
,
M. O.
,
Ogbebor
,
G. O.
,
Eshiemogie
,
S. A.
,
Igemhokhai
,
S.
,
Evbarunegbe
,
N. I.
,
Ayere
,
J. E.
, et al
,
2024
, “
Optimized Biodiesel Synthesis From an Optimally Formulated Ternary Feedstock Blend via Machine Learning-Informed Methanolysis Using a Composite Biobased Catalyst
,”
Bioresour. Technol. Rep.
,
25
, p.
101805
.
6.
Karabektas
,
M.
, and
Hosoz
,
M.
,
2009
, “
Performance and Emission Characteristics of a Diesel Engine Using Isobutanol-Diesel Fuel Blends
,”
Renewable Energy
,
34
(
6
), pp.
1554
1559
.
7.
Fernandez
,
J. C.
,
Arnal
,
J. M.
,
Gomez
,
J.
, and
Dorado
,
M. P.
,
2012
, “
A Comparison of Performance of Higher Alcohols/Diesel Fuel Blends in a Diesel Engine
,”
Appl. Energy
,
95
, pp.
267
275
.
8.
Lapuerta
,
M.
,
Rayes
,
G. C.
,
Javier
,
C. F.
, and
Dorado
,
M. P.
,
2010
, “
Stability, Lubricity, Viscosity, and Cold-Flow Properties of Alcohol-Diesel Blends
,”
Energy Fuels
,
24
(
8
), pp.
4497
4502
.
9.
Koivisto
,
E.
,
Ladommatos
,
N.
, and
Gold
,
M.
,
2015
, “
Systematic Study of the Effect of the Hydroxyl Functional Group in Alcohol Molecules on Compression Ignition and Exhaust Gas Emissions
,”
Fuel
,
153
, pp.
650
663
.
10.
Vikas
,
S.
,
Duraisamy
,
G.
, and
Arumugum
,
K.
,
2020
, “
Impact of Bio-Mix Fuel on Performance, Emission and Combustion Characteristics in a Single Cylinder DICI VCR Engine
,”
Renewable Energy
,
146
, pp.
111
124
.
11.
Dharma
,
S.
,
Masjuki
,
H. H.
,
Ong
,
H. C.
,
Sebayang
,
A. H.
,
Silitonga
,
A. S.
,
Kusumo
,
F.
, and
Mahlia
,
T. M. I.
,
2016
, “
Optimization of Biodiesel Production Process for Mixed Jatropha Curcas–Ceiba Pentandra Biodiesel Using Response Surface Methodology
,”
Energy Convers. Manage.
,
115
, pp.
178
190
.
12.
Miraculas
,
G. A.
,
Bose
,
N.
, and
Raj
,
R. E.
,
2018
, “
Process Parameter Optimization for Biodiesel Production From Mixed Feedstock Using Empirical Model
,”
Sustain. Energy Technol. Assess.
,
28
, pp.
54
59
.
13.
Brahma
,
S.
,
Nath
,
B.
,
Basumatary
,
B.
,
Das
,
B.
,
Saikia
,
P.
,
Patir
,
K.
, and
Basumatary
,
S.
,
2022
, “
Biodiesel Production From Mixed Oils: A Sustainable Approach Towards Industrial Biofuel Production
,”
Chem. Eng. J. Adv.
,
10
, p.
100284
.
14.
Elgharbawy
,
A. S.
,
Sadik
,
W. A.
,
Sadek
,
O. M.
, and
Kasaby
,
M. A
,
2022
, “
A Review on Biodiesel Feedstocks and Production Technologies
,”
J. Chil. Chem. Soc.
,
66
(
1
), pp.
5098
5109
.
15.
Kinast
,
J. A
.,
2003
, “
Production of Biodiesels from Multiple Feedstocks and Properties of Biodiesels and Biodiesel/Diesel Blends
,” NREL/SR-510-31460.
16.
Sani
,
Y. M.
,
Daud
,
W. M. A. W.
, and
Aziz
,
A. R. A.
,
2012
, “Biodiesel Feedstock and Production Technologies: Successes, Challenges and Prospects,”
Biodiesel—Feedstocks, Production and Applications
,
Z.
Fang
, ed.,
IntechOpen Publishers
,
London, UK
, pp.
77
101
.
17.
Rakopoulos
,
D. C.
,
Rakopoulos
,
C. D.
,
Giakoumis
,
E. G.
,
Dimaratos
,
A. M.
, and
Kyritsis
,
D. C.
,
2010
, “
Effects of Butanol-Diesel Fuel Blends on the Performance and Emissions of a High-Speed DI Diesel Engine
,”
Energy Convers. Manage.
,
51
(
10
), pp.
1989
1997
.
18.
d’Ambrosio
,
S.
, and
Ferrari
,
A.
,
2015
, “
Potential of Double Pilot Injection Strategies Optimized With the Design of Experiments Procedure to Improve Diesel Engine Emissions and Performance
,”
Appl. Energy
,
155
, pp.
918
932
.
19.
Nehmer
,
D. A.
, and
Reitz
,
R. D
.,
1994
, “
Measurement of the Effect of Injection Rate and Split Injections on Diesel Engine Soot and NOx Emissions
,” SAE Technical Paper No. 940648.
20.
Suh
,
H. K.
,
2011
, “
Investigations of Multiple Injection Strategies for the Improvement of Combustion and Exhaust Emissions Characteristics in a Low Compression Ratio (CR) Engine
,”
Appl. Energy
,
88
(
12
), pp.
5013
5019
.
21.
Sindhu
,
R.
,
Rao
,
G. A. P.
, and
Madhu
,
K. M.
,
2018
, “
Effective Reduction of NOx Emissions From Diesel Engine Using Split Injections
,”
J. Alexandria Eng.
,
57
(
3
), pp.
1379
1392
.
22.
Park
,
S.
,
Kim
,
H. J.
,
Shin
,
D. H.
, and
Lee
,
J. T.
,
2018
, “
Effects of Various Split Injection Strategies on Combustion and Emissions Characteristics in a Single-Cylinder Diesel Engine
,”
Appl. Therm Eng.
,
140
, pp.
422
431
.
23.
Susanth Susanth
,
R.
,
Nanthagopal
,
K.
,
Ashok
,
B.
,
Srinath
,
R.
,
Pranava Kumar
,
M.
, and
Bhowmick
,
P.
,
2019
, “
Investigation on Pilot Injection With Low-Temperature Combustion of Calophyllum Inophyllum Biodiesel Fuel in Common Rail Direct Injection Diesel Engine
,”
Fuel
,
258
, p.
116144
.
24.
Naresh
,
A. K.
,
Kishore
,
P. S.
,
Brahma
,
K. B.
,
Nanthagopal
,
K.
, and
Ashok
,
B.
,
2020
, “
Experimental Study on Engine Parameters Variation in CRDI Engine Fuelled With Palm Biodiesel
,”
Fuel
,
276
, p.
118076
.
25.
Ong
,
H. C.
,
Silitonga
,
A. S.
,
Masjuki
,
H. H.
,
Mahlia
,
T. M. I.
,
Chong
,
W. T.
, and
Boosroh
,
M. H.
,
2013
, “
Production and Comparative Fuel Properties of Biodiesel From Non-Edible Oils: Jatropha Curcas, Sterculia Foetida and Ceiba Pentandra
,”
” Energy Convers. Manage.
,
73
, pp.
245
255
.
26.
Alptekin
,
E.
,
Sanli
,
H.
, and
Canakci
,
M.
,
2019
, “
Combustion and Performance Evaluation of a Common Rail DI Diesel Engine Fueled With Ethyl and Methyl Esters
,”
Appl. Therm. Eng.
,
149
, pp.
180
191
.
27.
Sivakumar
,
P.
,
Parthiban
,
K. S.
,
Sivakumar
,
P.
,
Vinoba
,
M.
, and
Renganathan
,
S.
,
2012
, “
Optimization of Extraction Process and Kinetics of Sterculia Foetida Seed Oil and Its Process Augmentation for Biodiesel Production
,”
Ind. Eng. Chem. Res.
,
51
(
26
), pp.
8992
8998
.
28.
Bindhu
,
C.
,
Reddy
,
J. R.
,
Rao
,
B. V. S. K.
,
Ravinder
,
T.
,
Chakrabarti
,
P. P.
,
Karuna
,
M. S. L.
, and
Prasad
,
R. B. N.
,
2012
, “
Preparation and Evaluation of Biodiesel From Sterculia Foetida Seed Oil
,”
J. Am. Oil Chem. Soc.
,
89
(
5
), pp.
891
896
.
29.
Yashvir
,
S.
,
Abhishek
,
S.
,
Sumit
,
T.
, and
Amneesh
,
S.
,
2019
, “
Optimization of Diesel Engine Performance and Emission Parameters Employing Cassia Tora Methyl Esters-Response Surface Methodology Approach
,”
Energy
,
168
, pp.
909
918
.
30.
Bhowmick
,
P.
,
Jeevanantham
,
A. K.
,
Ashok
,
B.
,
Nanthagopal
,
K.
,
Perumal
,
D. A.
,
Karthickeyan
,
V.
,
Vora
,
K. C.
, and
Jain
,
A.
,
2019
, “
Effect of Fuel Injection Strategies and EGR on Biodiesel Blend in a CRDI Engine
,”
Energy
,
181
, pp.
1094
1113
.
31.
Jin
,
C.
,
Yao
,
M.
,
Liu
,
H.
,
Lee
,
C. F. F.
, and
Ji
,
J.
,
2011
, “
Progress in the Production and Application of n-Butanol as a Biofuel
,”
Renewable Sustainable Energy Rev.
,
15
(
8
), pp.
4080
4106
.
32.
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2014
, “
Combustion and Emission Characterization of n-Butanol Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
011101
.
33.
Han
,
X.
,
Zheng
,
M.
, and
Wang
,
J.
,
2013
, “
Fuel Suitability for Low-Temperature Combustion in Compression Ignition Engine
,”
Fuel
,
109
, pp.
336
349
.
34.
Yanai
,
T.
,
Dev
,
S.
,
Han
,
X.
,
Zheng
,
M.
, and
Tjong
,
J.
,
2015
, “
Impact of Fuelling Techniques on Neat n-Butanol Combustion and Emissions in a Compression Ignition Engine
,”
SAE Int. J Eng.
,
8
(
2
), pp.
735
746
.
35.
Babu
,
V. M.
,
Madhu
,
M. K.
, and
Rao
,
G. A. P.
,
2017
, “
Butanol and Pentanol: The Promising Biofuels for CI Engines—A Review
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
1068
1088
.
36.
Yoshimoto
,
Y.
, and
Onodera
,
M
.,
2002
, “
Performance of a Diesel Engine Fueled by Rapeseed Oil Blended With Oxygenated Organic Compounds
,” SAE Technical Paper 2002-01-2854.
37.
Rakopoulos
,
D. C.
,
2013
, “
Combustion and Emissions of Cottonseed Oil and its Bio-Diesel in Blends With Either n-Butanol or Diethyl Ether in HSDI Diesel Engine
,”
Fuel
,
105
, pp.
603
613
.
38.
Zheng
,
Z.
,
Xia
,
M.
,
Liu
,
H.
,
Shang
,
R.
,
Ma
,
G.
, and
Yao
,
M.
,
2018
, “
Experimental Study on Combustion and Emissions of n-Butanol/Biodiesel Under Both Blended Fuel Mode and Dual Fuel RCCI Mode
,”
Fuel
,
226
, pp.
240
251
.
39.
Yao
,
M.
,
Wang
,
H.
,
Zheng
,
Z.
, and
Yue
,
Y.
,
2010
, “
Experimental Study of n-Butanol Additive and Multi-Injection on HD Diesel Engine Performance and Emissions
,”
Fuel
,
89
(
9
), pp.
2191
2201
.
40.
Altun
,
S.
,
Öner
,
C.
,
Yaşar
,
F.
, and
Adin
,
H.
,
2011
, “
Effect of n-Butanol Blending With a Blend of Diesel and Biodiesel on Performance and Exhaust Emissions of a Diesel Engine
,”
Ind. Eng. Chem. Res.
,
50
(
15
), pp.
9425
9430
.
41.
Ibrahim
,
A.
,
2016
, “
Performance and Combustion Characteristics of a Diesel Engine Fuelled by Butanol-Biodiesel-Diesel Blends
,”
Appl. Therm. Eng.
,
103
, pp.
651
659
.
42.
Zhang
,
Y.
,
Zhao
,
W.
,
Wu
,
H.
,
He
,
Z.
,
Qian
,
Y.
, and
Lu
,
X.
,
2022
, “
Performance, Combustion, and Emission Evaluation of Ethanol-Gasoline Blends Ignited by Diesel in Dual-Fuel Intelligent Charge Compression Ignition (ICCI) Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082104
.
43.
Sastry
,
G. R.
,
Gugulothu
,
S. K.
,
Raju
,
L. B. B.
,
Panda
,
J. K.
,
Swapnil
,
S. B.
, and
Bhasker
,
B.
,
2022
, “
Influence of Exhaust Gas Recirculation on Performance, Combustion, and Emission Characteristics of a Common Rail Direct Injection Diesel Engine Fueled by Diesel/Higher Alcohol Blends
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
10
), p.
101001
.
44.
Azad
,
A. K.
,
Halder
,
P.
,
Wu
,
Q.
,
Rasul
,
M. G.
,
Hassan
,
N. M. S.
, and
Karthickeyan
,
V.
,
2023
, “
Experimental Investigation of Ternary Biodiesel Blends Combustion in a Diesel Engine to Reduce Emissions
,”
Energy Convers. Manage.
,
20
, p.
100499
.
45.
Ayazi
,
M.
,
Rasul
,
M. G.
,
Khan
,
M. M. K.
, and
Hassan
,
N. M. S.
,
2023
, “
Experimental Investigation of Fuel Consumption and Emissions of Diesel Engine Fueled With Ternary Fuel Blends of Diesel, Biodiesel and Bioethanol
,”
Energy Rep.
,
9
(
12
), pp.
470
475
.
46.
Subramanian
,
K.
,
Paramasivam
,
S. A.
,
Damodharan
,
D.
, and
Jayabal
,
R.
,
2023
, “
Effect of Pilot Fuel Injection Strategies and EGR on a CRDI Diesel Engine Powered by Simmondsia Chinensis Seed Biodiesel-Methyl Acetate Blend
,”
Sustain. Energy Technol. Assess.
,
58
, p.
103345
.
47.
Ahmad
,
S.
,
Jafry
,
A. T.
,
Haq
,
M. U.
,
Asif
,
M.
,
Ahmad
,
K.
, and
Zafar
,
F. U.
,
2023
, “
Experimental Study of Castor Biodiesel Ternary Blends With Ethanol, Butanol, Diethyl Ether and Dibutyl Ether in a Diesel Engine
,”
J. Therm. Anal. Calorim.
,
148
(
3
), pp.
927
941
.
48.
Feneley
,
A. J.
,
Pesiridis
,
A.
, and
Andwari
,
A. M.
,
2017
, “
Variable Geometry Turbocharger Technologies for Exhaust Energy Recovery and Boosting—A Review
,”
Renewable Sustainable Energy Rev.
,
71
, pp.
959
975
.
49.
Ma
,
F.
, and
Hanna
,
M. A.
,
1999
, “
Biodiesel Production. A Review
,”
Bioresour. Technol.
,
70
(
1
), pp.
1
15
.
50.
Marri
,
V. B.
,
Kotha
,
M. M.
, and
Gaddale
,
A. P. R.
,
2020
, “
Production Process Optimisation of Sterculia Foetida Methyl Esters (Biodiesel) Using Response Surface Methodology
,”
Int. J. Ambient Energy
,
43
(
1
), pp.
1837
1846
.
51.
Erdoğan
,
S.
,
Balki
,
M. K.
, and
Sayin
,
C.
,
2019
, “
The Effect on the Knock Intensity of High Viscosity Biodiesel Use in a DI Diesel Engine
,”
Fuel
,
253
, pp.
1162
1167
.
52.
Khan
,
M. M.
,
Chatterjee
,
R.
,
Hasnain
,
S. M. M.
,
Giri
,
J.
, and
Zairov
,
R.
,
2024
, “
Effect of Fuel Injection Parameters on the Performance and Emissions of Biodiesel Based CI Engine—A Review
,”
Results Eng.
,
24
, p.
103180
.
53.
Payri
,
R.
,
Salvador
,
F. J.
,
Gimeno
,
J.
, and
Bracho
,
G.
,
2011
, “
The Effect of Temperature and Pressure on Thermodynamic Properties of Diesel and Biodiesel Fuels
,”
Fuel
,
90
(
3
), pp.
1172
1180
.
54.
Han
,
D.
,
Li
,
K.
,
Duan
,
Y.
,
Lin
,
H.
, and
Huang
,
Z.
,
2017
, “
Numerical Study on Fuel Physical Effects on the Split Injection Processes on a Common Rail Injection System
,”
Energy Convers. Manage.
,
134
, pp.
47
58
.
55.
Caresana
,
F.
,
2011
, “
Impact of Biodiesel Bulk Modulus on Injection Pressure and Injection Timing. The Effect of Residual Pressure
,”
Fuel
,
90
(
2
), pp.
477
485
.
56.
Damanik
,
N.
,
2022
, “
Investigation of B20 Preheating Effectivity in Single Cylinder Compression Ignition Engine Performance
,”
Energy Rep.
,
8
(
3
), pp.
352
358
.
57.
Shehata
,
M. S.
,
2013
, “
Emissions, Performance and Cylinder Pressure of Diesel Engine Fueled by Biodiesel Fuel
,”
Fuel
,
112
, pp.
513
522
.
58.
Wei
,
L.
,
Cheung
,
C. S.
, and
Ning
,
Z.
,
2018
, “
Effects of Biodiesel-Ethanol and Biodiesel-Butanol Blends on the Combustion, Performance and Emissions of a Diesel Engine
,”
Energy
,
155
, pp.
957
970
.
You do not currently have access to this content.