Abstract

This article investigates the optimization of a shell-and-tube heat exchanger design through the optimization of baffle spacing and cut. This study focuses on the impact of baffle spacing (20–35%) and baffle cut percentage (20–35%) on heat transfer performance while considering the effect of the presence or the absence of seals. This study aims to optimize the heat exchanger design by using computational fluid dynamics (CFD) to reduce the pressure drop and increase the heat transfer. Studying the flow in heat exchangers is challenging due to its complex physics, especially in nonstandard geometries or novel fluid systems, which makes traditional methods relatively less accurate compared to modern approaches. The following fluid is so far uninvestigated for CFD analysis of heat exchangers: a mixture of 80% ethanol and 20% water is used as the tube-side fluid and water is used as the shell-side fluid. The Bell–Delaware method is employed for initial thermal analysis, followed by CFD simulations using ansys fluent to assess the influence of design modifications on heat transfer efficiency and pressure drop. The presence of seals is shown to improve the heat transfer efficiency by about 10.9% compared to the case when seals are absent, while optimal baffle spacing and baffle cuts are able to increase the efficiency of the heat exchanger by about 110% not inclusive of the effect of seals. Our findings show that the performance of a shell-and-tube heat exchanger is improved dramatically by the addition of seals and optimal selection of baffle cut and spacing.

References

1.
Master
,
B. I.
,
Chunangad
,
K. S.
,
Boxma
,
A. J.
,
Kral
,
D.
, and
Stehlík
,
P.
,
2006
, “
Most Frequently Used Heat Exchangers From Pioneering Research to Worldwide Applications
,”
Heat Transf. Eng.
,
27
(
6
), pp.
4
11
.
2.
Costa
,
A. L. H.
, and
Queiroz
,
E. M.
,
2008
, “
Design Optimization of Shell-and-Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
28
(
14–15
), pp.
1798
1805
.
3.
Longeon
,
M.
,
Soupart
,
A.
,
Fourmigué
,
J. F.
,
Bruch
,
A.
, and
Marty
,
P.
,
2013
, “
Experimental and Numerical Study of Annular PCM Storage in the Presence of Natural Convection
,”
Appl. Energy
,
112
, pp.
175
184
.
4.
Bell
,
K. J.
,
2004
, “
Heat Exchanger Design for the Process Industries
,”
ASME J. Heat Transfer
,
126
(
6
), pp.
877
885
.
5.
Stehlík
,
P.
,
Němčanský
,
J.
,
Kral
,
D.
, and
Swanson
,
L. W.
,
1994
, “
Comparison of Correction Factors for Shell-and-Tube Heat Exchangers With Segmental or Helical Baffles
,”
Heat Transf. Eng.
,
15
(
1
), pp.
55
65
.
6.
Li
,
H.
, and
Kottke
,
V.
,
1998
, “
Visualization and Determination of Local Heat Transfer Coefficients in Shell-and-Tube Heat Exchangers for Staggered Tube Arrangement by Mass Transfer Measurements
,”
Exp. Therm. Fluid Sci.
,
17
(
3
), pp.
210
216
.
7.
Mukherjee
,
R.
,
1998
, “
Effectively Design Shell-and-Tube Heat Exchangers
,”
Chem. Eng. Prog.
, 94(2), pp.
21
37
.
8.
Kern
,
D. Q.
,
1950
,
Process Heat Transfer
,
McGraw-Hill Book Company
,
New York
.
9.
Serna-González
,
M.
,
Ponce-Ortega
,
J. M.
,
Castro-Montoya
,
A. J.
, and
Jiménez-Gutiérrez
,
A.
,
2006
, “
Feasible Design Space for Shell-and-Tube Heat Exchangers Using the Bell−Delaware Method
,”
Ind. Eng. Chem. Res.
,
46
(
1
), pp.
143
155
.
10.
Serna
,
M.
, and
Jiménez
,
A.
,
2005
, “
A Compact Formulation of the Bell–Delaware Method for Heat Exchanger Design and Optimization
,”
Chem. Eng. Res. Des.
,
83
(
5
), pp.
539
550
.
11.
Chen
,
X.
,
Li
,
N.
,
Zhou
,
X.
, and
Duan
,
Z.
,
2024
, “
Prediction of Heat Transfer for Compact Tube Heat Exchanger Based on Porous Models
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
3
), p. 031002.
12.
Prithiviraj
,
M.
, and
Andrews
,
M. J.
,
1998
, “
Three Dimensional Numerical Simulation of Shell-and-Tube Heat Exchangers. Part I: Foundation and Fluid Mechanics
,”
Numer. Heat Transf. Part A Appl.
,
33
(
8
), pp.
799
816
.
13.
Aslam Bhutta
,
M. M.
,
Hayat
,
N.
,
Bashir
,
M. H.
,
Khan
,
A. R.
,
Ahmad
,
K. N.
, and
Khan
,
S.
,
2012
, “
CFD Applications in Various Heat Exchangers Design: A Review
,”
Appl. Therm. Eng.
,
32
(
1
), pp.
1
12
.
14.
Jordaan
,
H.
,
Stephan Heyns
,
P.
, and
Hoseinzadeh
,
S.
,
2021
, “
Numerical Development of a Coupled One-Dimensional/Three-Dimensional Computational Fluid Dynamics Method for Thermal Analysis With Flow Maldistribution
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
4
), p. 041017.
15.
Selbaş
,
R.
,
Kızılkan
,
Ö
, and
Reppich
,
M.
,
2006
, “
A New Design Approach for Shell-and-Tube Heat Exchangers Using Genetic Algorithms From Economic Point of View
,”
Chem. Eng. Process. Process Intensif.
,
45
(
4
), pp.
268
275
.
16.
Tayal
,
M. C.
,
Fu
,
Y.
, and
Diwekar
,
U. M.
,
1999
, “
Optimal Design of Heat Exchangers: A Genetic Algorithm Framework
,”
Ind. Eng. Chem. Res.
,
38
(
2
), pp.
456
467
.
17.
Bazgir
,
A.
, and
Zhang
,
Y.
, “
Hanessing Deep Learning to Solve Inverse Transient Heat Transfer With Periodic Boundary Condition
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
12
), p.
121001
.
18.
Zhang
,
J. F.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
3D Numerical Simulation on Shell-and-Tube Heat Exchangers With Middle-Overlapped Helical Baffles and Continuous Baffles—Part II: Simulation Results of Periodic Model and Comparison Between Continuous and Noncontinuous Helical Baffles
,”
Int. J. Heat Mass Transf.
,
52
(
23–24
), pp.
5381
5389
.
19.
Rashidi
,
M. M.
,
Mahariq
,
I.
,
Alhuyi Nazari
,
M.
,
Accouche
,
O.
, and
Bhatti
,
M. M.
,
2022
, “
Comprehensive Review on Exergy Analysis of Shell and Tube Heat Exchangers
,”
J. Therm. Anal. Calorim.
,
147
(
22
), pp.
12301
12311
.
20.
Moeini Sedeh
,
M.
, and
Khodadadi
,
J. M.
,
2013
, “
Energy Efficiency Improvement and Fuel Savings in Water Heaters Using Baffles
,”
Appl. Energy
,
102
, pp.
520
533
.
21.
Ambekar
,
A. S.
,
Sivakumar
,
R.
,
Anantharaman
,
N.
, and
Vivekenandan
,
M.
,
2016
, “
CFD Simulation Study of Shell and Tube Heat Exchangers With Different Baffle Segment Configurations
,”
Appl. Therm. Eng.
,
108
, pp.
999
1007
.
22.
El Maakoul
,
A.
,
Laknizi
,
A.
,
Saadeddine
,
S.
,
El Metoui
,
M.
,
Zaite
,
A.
,
Meziane
,
M.
, and
Ben Abdellah
,
A.
,
2016
, “
Numerical Comparison of Shell-Side Performance for Shell and Tube Heat Exchangers With Trefoil-Hole, Helical and Segmental Baffles
,”
Appl. Therm. Eng.
,
109
, pp.
175
185
.
23.
Abdelmoety
,
A. M.
,
Muhieldeen
,
M. W.
,
Yen Tey
,
W.
,
Yin
,
X.
, and
Beit
,
N. E.
,
2024
, “
Numerical Investigations on Optimised Shell Designs of a U-Tube Heat Exchanger
,”
Therm. Sci. Eng. Prog.
,
47
(
December
), p.
102327
.
24.
Ozden
,
E.
, and
Tari
,
I.
,
2010
, “
Shell Side CFD Analysis of a Small Shell-and-Tube Heat Exchanger
,”
Energy Convers. Manag.
,
51
(
5
), pp.
1004
1014
.
25.
Pal
,
E.
,
Kumar
,
I.
,
Joshi
,
J. B.
, and
Maheshwari
,
N. K.
,
2016
, “
CFD Simulations of Shell-Side Flow in a Shell-and-Tube Type Heat Exchanger With and Without Baffles
,”
Chem. Eng. Sci.
,
143
, pp.
314
340
.
26.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
27.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.
28.
ANSYS
,
Inc.
,
2009
, “ANSYS Fluent Theory Guide,” http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/main_pre.htm, Accessed July 4, 2024.
29.
Biswas
,
G.
, and
Eswaran
,
V.
,
2002
,
Turbulent Flows: Fundamentals, Experiments and Modeling
,
CRC Press
,
Boca Raton, FL
.
30.
Ocłoń
,
P.
,
Łopata
,
S.
,
Stelmach
,
T.
,
Li
,
M.
,
Zhang
,
J. F.
,
Mzad
,
H.
, and
Tao
,
W. Q.
,
2021
, “
Design Optimization of a High-Temperature Fin-and-Tube Heat Exchanger Manifold—A Case Study
,”
Energy
,
215
, p.
119059
.
31.
Shahril
,
S. M.
,
Quadir
,
G. A.
,
Amin
,
N. A. M.
, and
Badruddin
,
I. A.
,
2017
, “
Thermo Hydraulic Performance Analysis of a Shell-and-Double Concentric Tube Heat Exchanger Using CFD
,”
Int. J. Heat Mass Transf.
,
105
, pp.
781
798
.
32.
Alperen
,
M. A.
,
Kayabaşi
,
E.
, and
Kurt
,
H.
,
2023
, “
Detailed Comparison of the Methods Used in the Heat Transfer Coefficient and Pressure Loss Calculation of Shell Side of Shell and Tube Heat Exchangers With the Experimental Results
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
45
(
2
), pp.
5661
5680
.
33.
Li
,
N.
,
Chen
,
J.
,
Cheng
,
T.
,
Klemeš
,
J. J.
,
Varbanov
,
P. S.
,
Wang
,
Q.
,
Yang
,
W.
,
Liu
,
X.
, and
Zeng
,
M.
,
2020
, “
Analysing Thermal-Hydraulic Performance and Energy Efficiency of Shell-and-Tube Heat Exchangers With Longitudinal Flow Based on Experiment and Numerical Simulation
,”
Energy
,
202
, p.
117757
.
34.
Chen
,
J.
,
Li
,
N.
,
Ding
,
Y.
,
Klemeš
,
J. J.
,
Varbanov
,
P. S.
,
Wang
,
Q.
, and
Zeng
,
M.
,
2020
, “
Experimental Thermal-Hydraulic Performances of Heat Exchangers With Different Baffle Patterns
,”
Energy
,
205
, p.
118066
.
You do not currently have access to this content.