Abstract

Zero boil-off (ZBO) storage technology that integrates passive insulation with active refrigeration serves as the fundamental technical basis for the long-term and stable storage of cryogenic liquids. To explore the transient thermodynamic behavior of the gas–liquid flow within the storage tank and research the optimal coupling forms between the refrigerator and the tank during the ZBO storage process, a ZBO experimental setup was constructed. Initially, the mechanisms of thermal stratification and the tank pressurization during the self-pressurization phase were investigated. Subsequently, a comparative analysis was carried out regarding the power consumption of the refrigerator and the internal transient thermodynamic behavior under various coupling forms between the refrigerator and the tank. The results indicated that the refrigerator power consumption under the cooling liquid form was decreased by 29.4% in comparison to that under the recondensing gas form. Moreover, the cooling liquid form significantly enhanced the convection of the fluids, effectively alleviating the thermal stratification phenomenon. Furthermore, the effects of storage pressure and initial filling rate on the refrigerator power consumption and the internal thermodynamic behavior were analyzed. The setup provides valuable insights for the development of a measuring device that couples multiple parameters of temperature and pressure.

References

1.
Schaad
,
C.
,
Mosleh
,
S.
,
Yang
,
R.
, and
Groth
,
K. M.
,
2025
, “
Quantitative Risk Assessment of Hydrogen Releases in a Hydrogen Fueling Station With Liquid Hydrogen Storage
,”
Int. J. Hydrogen Energy
,
112
, pp.
111
120
.
2.
Xu
,
X.
,
Zheng
,
J.
, and
Xu
,
L.
,
2022
, “
Comparative Study on Thermodynamic Characteristics of Composite Thermal Insulation Systems With Liquid Methane, Oxygen, and Hydrogen
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
6
), p.
061007
.
3.
Al Ghafri
,
S. Z. S.
,
Swanger
,
A.
,
Jusko
,
V.
,
Siahvashi
,
A.
,
Perez
,
F.
,
Johns
,
M. L.
, and
May
,
E. F.
,
2022
, “
Modelling of Liquid Hydrogen Boil-Off
,”
Energies
,
15
(
3
), p.
1149
.
4.
Zheng
,
J.
,
Chen
,
L.
,
Wang
,
J.
,
Xi
,
X.
,
Zhu
,
H.
,
Zhou
,
Y.
, and
Wang
,
J.
,
2019
, “
Thermodynamic Analysis and Comparison of Four Insulation Schemes for Liquid Hydrogen Storage Tank
,”
Energy Convers. Manage.
,
186
, pp.
526
534
.
5.
Jiang
,
W.
,
Zuo
,
Z.
,
Sun
,
P.
,
Li
,
P.
, and
Huang
,
Y.
,
2022
, “
Thermal Analysis of Coupled Vapor-Cooling-Shield Insulation for Liquid Hydrogen-Oxygen Pair Storage
,”
Int. J. Hydrogen Energy
,
47
(
12
), pp.
8000
8014
.
6.
Lv
,
R.
,
Guo
,
S.
,
Huang
,
Y.
,
Yang
,
G.
, and
Wu
,
J.
,
2025
, “
Evaluation of Thermal Destratification Performance and Optimization of Jetting Parameters in a Spray-Bar Thermodynamic Vent System
,”
Appl. Therm. Eng.
,
258
(
PB
), p.
124621
.
7.
Hartwig
,
J.
,
Stephens
,
J.
,
Rhys
,
N.
,
Clark
,
J.
,
Leclair
,
A.
, and
Majumdar
,
A.
,
2022
, “
Test Data Analysis of the Thermodynamic Vent System-Augmented Top Spray Injector Liquid Nitrogen Transfer Experiments
,”
Int. J. Heat Mass Transfer
,
194
, p.
122986
.
8.
Xu
,
J.
,
Liu
,
F. A.
,
Zhang
,
J.
,
Li
,
C.
,
Liu
,
Q.
,
Li
,
C.
,
Jia
,
W.
,
Fu
,
S.
, and
Li
,
L.
,
2024
, “
Numerical Study on Heat Leakage, Thermal Stratification, and Self-Pressurization Characteristics in Liquid Helium Storage Tanks
,”
Energies
,
17
(
24
), pp.
6254
6254
.
9.
Yang
,
Y.
,
Jiang
,
W.
, and
Huang
,
Y.
,
2023
, “
Experiment on Transient Thermodynamic Behavior of a Cryogenic Storage Tank Protected by a Composite Insulation Structure
,”
Energy
,
270
, p.
126929
.
10.
Zheng
,
J.
,
Chen
,
L.
,
Wang
,
P.
,
Zhang
,
J.
,
Wang
,
J.
, and
Zhou
,
Y.
,
2020
, “
A Novel Cryogenic Insulation System of Hollow Glass Microspheres and Self-evaporation Vapor-Cooled Shield for Liquid Hydrogen Storage
,”
Front. Energy
,
14
(
3
), pp.
570
577
.
11.
Plachta
,
D. W.
,
Johnson
,
W. L.
, and
Feller
,
J. R.
,
2016
, “
Zero Boil-Off System Testing
,”
Cryogenics
,
74
, pp.
88
94
.
12.
Imai
,
R.
,
Nishida
,
K.
,
Kawanami
,
O.
,
Umemura
,
Y.
, and
Himeno
,
T.
,
2020
, “
Basic Study on Thermodynamic Vent System in Propulsion System for Future Spacecraft
,”
Microgravity Sci. Technol.
,
32
(
3
), pp.
339
348
.
13.
Mer
,
S.
,
Thibault
,
J. P.
, and
Corre
,
C.
,
2016
, “
Active Insulation Technique Applied to the Experimental Analysis of a Thermodynamic Control System for Cryogenic Propellant Storage
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
2
), p.
021024
.
14.
Majumdar
,
A.
,
LeClair
,
A.
,
Hartwig
,
J.
, and
Mostafa Ghiaasiaan
,
S.
,
2023
, “
Numerical Modeling of No Vent Filling of a Cryogenic Tank With Thermodynamic Vent System Augmented Injector
,”
Cryogenics
,
131
, p.
103651
.
15.
Zhang
,
W.
,
Xu
,
L.
,
Zhang
,
J.
,
Zheng
,
Z.
,
Miao
,
R.
, and
Huang
,
Y.
,
2025
, “
Multi-objective Optimization of Cryogenic Propellant Zero Boil-Off Storage: Modeling, Optimization Method and Performance Enhancement
,”
Energy
,
320
, p.
135365
.
16.
Morales-Ospino
,
R.
,
Celzard
,
A.
, and
Fierro
,
V.
,
2023
, “
Strategies to Recover and Minimize Boil-Off Losses During Liquid Hydrogen Storage
,”
Renew. Sustain. Energy Rev.
,
182
, p.
113360
.
17.
Plachta
,
D.
,
Stephens
,
J.
,
Johnson
,
W.
, and
Zagarola
,
M.
,
2018
, “
NASA Cryocooler Technology Developments and Goals to Achieve Zero Boil-Off and to Liquefy Cryogenic Propellants for Space Exploration
,”
Cryogenics
,
94
, pp.
95
102
.
18.
Notardonato
,
W. U.
,
Swanger
,
A. M.
,
Fesmire
,
J. E.
,
Jumper
,
K. M.
,
Johnson
,
W. L.
, and
Tomsik
,
T. M.
,
2017
, “
Zero Boil-Off Methods for Large-Scale Liquid Hydrogen Tanks Using Integrated Refrigeration and Storage
,”
Adv. Cryog. Eng.
,
278
, p.
012012
.
You do not currently have access to this content.