Abstract

This study presents a computational investigation of film cooling enhancement using novel trenched-hole geometries. By using validated computational fluid dynamics (CFD) simulations and the Renormalization Group (RNG) k–ε turbulence model, seven configurations were analyzed over a range of blowing ratios (M = 0.5, 1.0, and 1.5). The results show that intermediate trench widths significantly improve lateral coolant dispersion and reduce counterrotating vortex pair (CRVP) effects, leading to enhanced adiabatic film cooling effectiveness. Among all cases, the configuration with moderate trench width (case 4) achieved the highest performance at a blowing ratio of M = 1.0, offering an optimal balance between cooling coverage and aerodynamic pressure loss. These findings provide insight into trench design strategies for improved thermal protection in gas turbine components.

References

1.
Eckert
,
E. R. G.
,
1970
, “
Gas-to-Gas Film Cooling
,”
J. Eng. Phys.
,
19
(
3
), pp.
1091
1101
.
2.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
3.
Papell
,
S. S.
,
1984
, “
Vortex Generating Flow Passage Design for Increased Film-Cooling Effectiveness and Surface Coverage
,”
Twenty-second National Heat Transfer Conference
,
Niagara Falls, New York
,
Aug. 5–8
.
4.
Makki
,
Y.
, and
Jakubowski
,
G.
,
1986
, “
An Experimental Study of Film Cooling From Diffused Trapezoidal Shaped Holes
,”
4th Thermophysics and Heat Transfer Conference
,
Boston, MA
,
June 2–4
, p.
1326
.
5.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
(
4
), pp.
800
806
.
6.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
807
813
.
7.
Lutum
,
E.
, and
Johnson
,
B. V.
,
1998
, “
Influence of the Hole Length-to-Diameter Ratio on Film Cooling With Cylindrical Holes
,”
Turbo Expo: Power for Land, Sea, and Air
,
Stockholm, Sweden
,
June 1–5
.
8.
Cho
,
H. H.
,
Kim
,
B.
, and
Rhee
,
D. H.
,
1998
, “
Effects of Hole Geometry on Heat (Mass) Transfer and Film Cooling Effectiveness
,”
International Heat Transfer Conference Digital Library.
,
Kyongju, South Korea
,
Aug. 23–28
, pp.
499
504
.
9.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
.
10.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
461
471
.
11.
Nasir
,
H.
,
Acharya
,
S.
, and
Ekkad
,
S.
,
2001
, “
Film Cooling From a Single row of Cylindrical Angled Holes With Triangular Tabs Having Different Orientations
,”
Turbo Expo: Power for Land, Sea, and Air
,
New Orleans, LA
,
June 4–7
, Vol. 78521.
12.
Fric
,
T. F.
, and
Campbell
,
R. P.
,
2002
, “
Method for Improving the Cooling Effectiveness of a Gaseous Coolant Stream Which Flows Through a Substrate and Related Articles of Manufacture
,” U.S. Patent No. 6,383,602, Washington, DC, U.S. Patent and Trademark Office.
13.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
14.
Lu
,
Y.
,
Nasir
,
H.
, and
Ekkad
,
S. V.
,
2005
, “
Film Cooling From a Row of Holes Embedded in Transverse Slots
,”
Turbo Expo: Power for Land, Sea, and Air
,
Reno-Tahoe, NV
,
June 6–10
, Vol. 47268, pp.
585
592
.
15.
Lu
,
Y.
,
Dhungel
,
A.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
,
2009
, “
Effect of Trench Width and Depth on Film Cooling From Cylindrical Holes Embedded in Trenches
,”
ASME J. Turbomach.
,
131
(
1
), p.
011003
.
16.
Lu
,
Y.
,
Dhungel
,
A.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
,
2009
, “
Film Cooling Measurements for Cratered Cylindrical Inclined Holes
,”
ASME J. Turbomach.
,
131
(
1
), p.
011005
.
17.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
.
18.
Gao
,
Z.
,
Narzary
,
D. P.
, and
Han
,
J. C.
,
2008
, “
Film Cooling on a Gas Turbine Blade Pressure Side or Suction Side With Axial Shaped Holes
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2139
2152
.
19.
Azzi
,
A.
,
Nemdili
,
F.
, and
Jubran
,
B. A.
,
2009
, “
Influence des défauts des trous d’injection sur l’efficacité du refroidissement par film
,”
CFM 2009-19ème Congrès Français de Mécanique
,
Marseille, France
,
Aug. 24–28
.
20.
Dhungel
,
A.
,
Lu
,
Y.
,
Phillips
,
W.
,
Ekkad
,
S. V.
, and
Heidmann
,
J.
,
2009
, “
Film Cooling From a Row of Holes Supplemented With Antivortex Holes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021007
.
21.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2009
, “
A Numerical Study on Improving Large Angle Film Cooling Performance Through the Use of Sister Holes
,”
Numer. Heat Transfer, Part A
,
55
(
7
), pp.
634
653
.
22.
Nguyen
,
C. Q.
,
Johnson
,
P. L.
,
Bernier
,
B. C.
,
Ho
,
S. H.
, and
Kapat
,
J. S.
,
2010
, “
Comparison of Film Effectiveness and Cooling Uniformity of Conical and Cylindrical-Shaped Film Hole With Coolant-Exit Temperature Correction
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
3
), p.
031011
.
23.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
24.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.
25.
Moon
,
Y.
,
Park
,
S. S.
,
Park
,
J. S.
, and
Kwak
,
J. S.
,
2015
, “
Effect of Angle Between the Primary and Auxiliary Holes of an Anti-Vortex Film Cooling Hole
,”
Procedia Eng.
,
99
, pp.
1492
1496
.
26.
Abdelmohimen
,
M. A. H.
,
2015
, “
Numerical Investigation of Film Cooling From Two Rows of Holes With Anti-Vortex Holes Attached to the Upstream row
,”
Int. J. Eng. Innov. Technol.
,
5
(
2
), pp.
87
98
.
27.
Thurman
,
D.
,
Poinsatte
,
P.
,
Ameri
,
A.
,
Culley
,
D.
,
Raghu
,
S.
, and
Shyam
,
V.
,
2016
, “
Investigation of Spiral and Sweeping Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091007
.
28.
Park
,
S.
,
Chung
,
H.
,
Choi
,
S. M.
,
Kim
,
S. H.
, and
Cho
,
H. H.
,
2017
, “
Design of Sister Hole Arrangements to Reduce Kidney Vortex for Film Cooling Enhancement
,”
J. Mech. Sci. Technol.
,
31
(
8
), pp.
3981
3992
.
29.
Repko
,
T. W.
,
Nix
,
A. C.
,
Uysal
,
C.
, and
Heidmann
,
J. D.
,
2017
, “
Numerical Study on the Effects of Freestream Turbulence on Antivortex Film Cooling Design at High Blowing Ratio
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1
), p.
011013
.
30.
Ramesh
,
S.
,
LeBlanc
,
C.
,
Narzary
,
D.
,
Ekkad
,
S.
, and
Anne Alvin
,
M.
,
2017
, “
Film Cooling Performance of Tripod Antivortex Injection Holes Over the Pressure and Suction Surfaces of a Nozzle Guide Vane
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
021006
.
31.
Hou
,
R.
,
Wen
,
F.
,
Luo
,
Y.
,
Tang
,
X.
, and
Wang
,
S.
,
2019
, “
Large Eddy Simulation of Film Cooling Flow From Round and Trenched Holes
,”
Int. J. Heat Mass Transfer
,
144
, p.
118631
.
32.
Tan
,
X. M.
,
Zhang
,
J. Z.
, and
Cai
,
Q. Z.
,
2019
, “
Effects of Pin-Fin Shapes on Mesh-Fed Slot Film Cooling for a Flat-Plate Model
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031002
.
33.
Grine
,
M.
,
Boualem
,
K.
,
Dellil
,
A. Z.
, and
Azzi
,
A.
,
2020
, “
Improving Adiabatic Film-Cooling Effectiveness Spanwise and Lateral Directions by Combining BDSR and Anti-Vortex Designs
,”
Thermophys. Aeromech.
,
27
(
5
), pp.
749
758
.
34.
Ben Ali Kouchih
,
F.
,
Boualem
,
K.
,
Grine
,
M.
, and
Azzi
,
A.
,
2020
, “
The Effect of an Upstream Dune-Shaped Shells on Forward and Backward Injection Hole Film Cooling
,”
ASME J. Heat Transfer
,
142
(
12
), p.
122302
.
35.
Song
,
Y. J.
,
Park
,
S. H.
,
Kang
,
Y. J.
, and
Kwak
,
J. S.
,
2021
, “
Effects of Trench Configuration on the Film Cooling Effectiveness of a Fan-Shaped Hole
,”
Int. J. Heat Mass Transfer
,
178
, p.
121655
.
36.
Zhang
,
T.
,
Pu
,
J.
,
Zhou
,
W.-L.
,
Wang
,
J.-H.
,
Wu
,
W.-L.
, and
Chen
,
Y.
,
2021
, “
Effect of Transverse Trench on Film Cooling Performances of Typical Fan-Shaped Film-Holes at Concave and Convex Walls
,”
Int. J. Heat Mass Transfer
,
175
, p.
121384
.
37.
Zamiri
,
A.
,
You
,
S. J.
, and
Chung
,
J. T.
,
2020
, “
Large Eddy Simulation in the Optimization of Laidback Fan-Shaped Hole Geometry to Enhance Film-Cooling Performance
,”
Int. J. Heat Mass Transfer
,
158
, p.
120014
.
38.
Zamiri
,
A.
, and
Chung
,
J. T.
,
2021
, “
Large Eddy Simulation of Compound Angle Effects on Cooling Effectiveness and Flow Structure of Fan-Shaped Holes
,”
Int. J. Heat Mass Transfer
,
178
, p.
121599
.
39.
Zamiri
,
A.
,
Barigozzi
,
G.
, and
Chung
,
J. T.
,
2022
, “
Large Eddy Simulation of Film Cooling Flow From Shaped Holes With Different Geometrical Parameters
,”
Int. J. Heat Mass Transfer
,
196
, p.
123261
.
40.
Choi
,
J.
,
Choi
,
J.
,
Kwon
,
H.
,
Jang
,
H.
, and
Park
,
H.
,
2022
, “
Experimental Investigation of the Film Cooling Performance by Triangular-Shaped Thin Plates on Inclined Cylindrical Holes
,”
Front. Energy Res.
,
10
, p.
981275
.
41.
Wang
,
J.
,
Zhang
,
C.
,
Liu
,
X.
,
Song
,
L.
, and
Li
,
J.
,
2022
, “
Experimental and Numerical Investigation on the Film Cooling Performance of Cylindrical Hole and Fan-Shaped Hole With Vortex Generator Fed by Crossflow
,”
Int. J. Heat Mass Transfer
,
187
, p.
122560
.
42.
Huang
,
X.
,
Pu
,
J.
,
Zhang
,
T.
,
Wang
,
J.-H.
,
Wu
,
W.-L.
, and
Wu
,
X.-Y.
,
2022
, “
Effect of Length-to-Diameter Ratio on Film Cooling and Heat Transfer Performances of Simple and Compound Cylindrical-Holes in Transverse Trenches With Various Depths
,”
Int. J. Heat Mass Transfer
,
185
, p.
122328
.
43.
Yao
,
R.
,
Chen
,
J.
,
Wang
,
J.
,
Song
,
W.
, and
Su
,
H.
,
2023
, “
Large Eddy Simulation on Trenched Film Cooling With Forward and Backward Injections Under Pulsed Conditions
,”
Int. J. Heat Mass Transfer
,
215
, p.
124516
.
44.
Boualem
,
K.
,
Bordjane
,
M.
,
Bourdim
,
M.
,
Grine
,
M.
,
Ben Ali Kouchih
,
F.
, and
Azzi
,
A.
,
2023
, “
Numerical Investigation of V-Shaped Trench on Film Cooling Performance
,”
Thermophys. Aeromech.
,
30
(
2
), pp.
305
315
.
45.
Chen
,
Z.
,
Yang
,
X.
,
Chen
,
Y.
,
Tang
,
H.
,
Yu
,
B.
,
Cai
,
W.
, and
Du
,
Y.
,
2024
, “
Numerical Investigation on Cooling Performances of Laminated Cooling Configuration With External Discrete Slot-Trench Film Holes and Internal Clapboards
,”
Appl. Therm. Eng.
,
255
, p.
124002
.
46.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
47.
Silieti
,
M.
,
Divo
,
E.
, and
Kassab
,
A. J.
,
2010
, “
The Effect of Conjugate Heat Transfer on Film Cooling Effectiveness
,”
Numer. Heat Transfer, Part B
,
56
(
5
), pp.
335
350
.
48.
El Ayoubi
,
C.
,
Ghaly
,
W.
, and
Hassan
,
I.
,
2015
, “
Aerothermal Shape Optimization for a Double Row of Discrete Film Cooling Holes on the Suction Surface of a Turbine Vane
,”
Eng. Optim.
,
47
(
10
), pp.
1384
1404
.
49.
Wilfert
,
G.
, and
Fottner
,
L.
,
1996
, “
The Aerodynamic Mixing Effect of Discrete Cooling Jets With Mainstream Flow on a Highly Loaded Turbine Blade
,”
ASME J. Turbomach.
,
118
(
3
), pp.
468
478
.
You do not currently have access to this content.