Abstract

The study of background infrared radiation characteristics plays an important role in target detection and identification. Accurate modeling of ground infrared radiation characteristics relies on heat transfer theory to obtain background temperature variations under different environmental conditions. However, applying a theoretical model requires a comprehensive set of parameters, some of which are difficult to obtain accurately in practice. Solving the inverse heat transfer problem provides an approach to estimating optimal parameters by minimizing the discrepancy between calculated and measured temperatures. This article presents a method for optimizing modeling parameters of ground surface infrared radiation using historical temperature measurement data and the trust region reflective optimization algorithm. Initially, sensitivity matrix analysis reveals correlations among material parameters, guiding the development of optimization strategies. Thermal inertia is introduced to characterize strongly correlated thermal parameters, addressing correlation issues. Additionally, a day–night estimation strategy is employed, using nighttime data to estimate the emissivity and thermal inertia, while daytime data optimize the shortwave absorptivity. Long-term experimental validation shows the root mean square error of temperature predictions reduces from 4.72 °C (using the literature provided parameters) to 1.8 °C with optimized parameters. Furthermore, the accuracy and applicability of the algorithm under various weather conditions are examined, revealing an average temperature error of 1.35 °C under stable meteorological conditions. The long-term comparison results suggest that the optimized parameters retrieved from measured surface temperatures can improve modeling accuracy, providing a new approach for predicting surface temperatures and infrared radiation in outdoor environments.

References

1.
Gu
,
M.
,
Ren
,
Q.
,
Zhou
,
J.
, and
Liao
,
S.
,
2021
, “
Analysis and Identification of Infrared Radiation Characteristics of Different Attitude Targets
,”
Appl. Opt.
,
60
(
1
), pp.
109
118
.
2.
Zhang
,
H.
,
Rao
,
P.
,
Xia
,
H.
,
Weng
,
D.
,
Chen
,
X.
, and
Li
,
Y.
,
2021
, “
Modeling and Analysis of Infrared Radiation Dynamic Characteristics for Space Micromotion Target Recognition
,”
Infrared Phys. Technol.
,
116
, p.
103795
.
3.
Guerin
,
A.
,
Jaboyedoff
,
M.
,
Collins
,
B. D.
,
Derron
,
M.-H.
,
Stock
,
G. M.
,
Matasci
,
B.
,
Boesiger
,
M.
,
Lefeuvre
,
C.
, and
Podladchikov
,
Y. Y.
,
2019
, “
Detection of Rock Bridges by Infrared Thermal Imaging and Modeling
,”
Sci. Rep.
,
9
(
1
), p.
13138
.
4.
Marius
,
P. J.
“Thermal Infrared Characterization of Ground Targets and Backgrounds”.
5.
Jiang
,
Z.
,
Wang
,
B.
, and
Ren
,
Z.
,
2023
, “
Studying the Effect of Seasonal Changes on the Infrared Radiation Properties of the Ground Target Using Multi-physics Simulation
,”
Therm. Sci. Eng. Prog.
,
45
, p.
102090
.
6.
Mahmoodi
,
A.
,
Nabavi
,
A.
, and
Fesharaki
,
M.
,
2000
, “
Thermal Modeling of Desert Backgrounds in the Far-Infrared Spectral Region
,”
Opt. Eng.
,
39
(
9
), pp.
2545
2554
.
7.
Wollenweber
,
F.
,
1990
,
Weather Impact on Background Temperatures as Predicted by an IR Background Model
,
SPIE
,
Bellingham, WA
.
8.
Azam
,
M.-H.
,
Morille
,
B.
,
Bernard
,
J.
,
Musy
,
M.
, and
Rodriguez
,
F.
,
2018
, “
A New Urban Soil Model for SOLENE-Microclimat: Review, Sensitivity Analysis and Validation on a Car Park
,”
Urban Clim.
,
24
, pp.
728
746
.
9.
Qin
,
Y.
,
2016
, “
Pavement Surface Maximum Temperature Increases Linearly With Solar Absorption and Reciprocal Thermal Inertial
,”
Int. J. Heat Mass Transfer
,
97
, pp.
391
399
.
10.
Mendes
,
J. C.
,
Barreto
,
R. R.
,
de Paula
,
A. C. B.
,
Elói
,
F. P. F.
,
Brigolini
,
G. J.
, and
Peixoto
,
R. A. F.
,
2019
, “
On the Relationship Between Morphology and Thermal Conductivity of Cement-Based Composites
,”
Cem. Concrete Compos.
,
104
, p.
103365
.
11.
Zhang
,
D.
,
Duan
,
X.
,
Wang
,
G.
, and
Chen
,
H.
,
2023
, “
A Combined Inverse Prediction and Experimental Analysis for the Frozen Ground Heat Transfer in a Structure Foundation
,”
Int. J. Therm. Sci.
,
188
, p.
108250
.
12.
Alpar
,
S.
,
Berger
,
J.
,
Rysbaiuly
,
B.
, and
Belarbi
,
R.
,
2024
, “
Estimation of Soils Thermophysical Characteristics in a Nonlinear Inverse Heat Transfer Problem
,”
Int. J. Heat Mass Transfer
,
218
, p.
124727
.
13.
Yadav
,
M. K.
,
Singh
,
S. K.
,
Parwez
,
A.
, and
Khandekar
,
S.
,
2018
, “
Inverse Models for Transient Wall Heat Flux Estimation Based on Single and Multi-point Temperature Measurements
,”
Int. J. Therm. Sci.
,
124
, pp.
307
317
.
14.
Pan
,
W.
,
Yi
,
F.
,
Zhuo
,
L.
, and
Meng
,
S.
,
2019
, “
A Novel Method to Simultaneously Identify Temperature-Dependent Thermal Properties and Verification
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041011
.
15.
Singh
,
S. K.
,
Yadav
,
M. K.
,
Sonawane
,
R.
,
Khandekar
,
S.
, and
Muralidhar
,
K.
,
2017
, “
Estimation of Time-Dependent Wall Heat Flux From Single Thermocouple Data
,”
Int. J. Therm. Sci.
,
115
, pp.
1
15
.
16.
da Silva
,
W. B.
,
Dutra
,
J. C. S.
,
Kopperschimidt
,
C. E. P.
,
Lesnic
,
D.
, and
Aykroyd
,
R. G.
,
2021
, “
Sequential Particle Filter Estimation of a Time-Dependent Heat Transfer Coefficient in a Multidimensional Nonlinear Inverse Heat Conduction Problem
,”
Appl. Math. Model.
,
89
, pp.
654
668
.
17.
Zhu
,
F.
,
Chen
,
J.
, and
Han
,
Y.
,
2021
, “
A Multiple Regression Convolutional Neural Network for Estimating Multi-parameters Based on Overall Data in the Inverse Heat Transfer Problem
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
5
), p.
051003
.
18.
Jaluria
,
Y.
,
2019
, “
Solution of Inverse Problems in Thermal Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
1
), p.
011005
.
19.
Yuan
,
Y.
, and
Jiang
,
J.
,
2011
, “
Prediction of Temperature Response in Concrete in a Natural Climate Environment
,”
Constr. Build. Mater.
,
25
(
8
), pp.
3159
3167
.
20.
Ben-Yosef
,
N.
,
Rahat
,
B.
, and
Feigin
,
G.
,
1983
, “
Simulation of IR Images of Natural Backgrounds
,”
Appl. Opt.
,
22
(
1
), pp.
190
193
.
21.
Kahle
,
A. B.
,
1995
, “
A Simple Thermal Model of the Earth’s Surface for Geologic Mapping by Remote Sensing
,”
J. Geophys. Res.
,
82
(
11
), pp.
1673
1680
.
22.
Kalogirou
,
S.
, and
Florides
,
G.
,
2004
, “
Measurements of Ground Temperature at Various Depths
,”
International Conference on Sustainable Energy Technologies
,
Nottingham, UK
.
23.
Yang
,
J.
,
Hu
,
J.
,
Chen
,
Q.
, and
Quan
,
W.
,
2023
, “
Parameterization of Downward Long-Wave Radiation Based on Long-Term Baseline Surface Radiation Measurements in China
,”
Atmos. Chem. Phys.
,
23
(
7
), pp.
4419
4430
.
24.
Dedieu
,
J.-P.
,
2015
, “Newton-Raphson Method,”
Encyclopedia of Applied and Computational Mathematics
,
B.
Engquist
, ed.,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
1023
1028
.
25.
Zheng
,
L.
,
Sun
,
S.
, and
Zhang
,
T.
,
2009
,
A Method for Dynamic Infrared Image Simulation Under Various Natural Conditions
,
SPIE
,
United States
.
26.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2018
,
Fundamental Statistical Inference: A Computational Approach
,
John Wiley & Sons Ltd
,
Hoboken, NJ
.
27.
Tran
,
K. T.
, and
Hiltunen
,
D. R.
,
2012
, “
One-Dimensional Inversion of Full Waveforms Using a Genetic Algorithm
,”
J. Environ. Eng. Geophys.
,
17
(
4
), pp.
197
213
.
28.
Zhu
,
T.
,
Li
,
X.
,
Li
,
Y. Q.
, and
Zhang
,
M. G.
,
2011
, “
Seismic Scalar Wave Equation Inversion Based on an Improved Particle Swarm Optimization Algorithm
,”
Chin. J. Geophys.
,
54
, pp.
2951
2959
.
29.
Le
,
T. M.
,
Fatahi
,
B.
,
Khabbaz
,
H.
, and
Sun
,
W.
,
2017
, “
Numerical Optimization Applying Trust-Region Reflective Least Squares Algorithm With Constraints to Optimize the Non-Linear Creep Parameters of Soft Soil
,”
Appl. Math. Model.
,
41
, pp.
236
256
.
30.
Wu
,
L.
,
Chen
,
Z.
,
Long
,
C.
,
Cheng
,
S.
,
Lin
,
P.
,
Chen
,
Y.
, and
Chen
,
H.
,
2018
, “
Parameter Extraction of Photovoltaic Models From Measured I-V Characteristics Curves Using a Hybrid Trust-Region Reflective Algorithm
,”
Appl. Energy
,
232
, pp.
36
53
.
31.
Weiping
,
W.
,
Hongchun
,
W.
,
Haofeng
,
Z.
, and
Xiong
,
X.
,
2024
, “
A Pn-Wave Spectral Inversion Technique Based on Trust Region Reflective Algorithm
,”
J. Appl. Geophys.
,
230
, p.
105525
.
32.
Coleman
,
T. F.
, and
Li
,
Y.
,
1994
, “
On the Convergence of Interior-Reflective Newton Methods for Nonlinear Minimization Subject to Bounds
,”
Math. Program.
,
67
(
1
), pp.
189
224
.
33.
Coleman
,
T. F.
, and
Li
,
Y.
,
1996
, “
A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables
,”
SIAM J. Optim.
,
6
(
4
), pp.
1040
1058
.
34.
Coleman
,
T. F.
, and
Li
,
Y.
,
1993
, “
An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds
,”
SIAM J. Optim.
,
6
(
2
), pp.
418
445
.
35.
Hu
,
H.
,
Bai
,
T.
,
Guo
,
C. G.
,
Han
,
Q.
, and
Sun
,
Y.
,
2012
, “
Long Wave Infrared Scene Simulation Research Based on Zero Stadia of Landmark
,”
Acta Opt. Sin.
,
32
(
10
), pp.
102
110
.
36.
Shiloh
,
R.
,
Stryjer
,
R.
,
Weizman
,
A.
, and
Nutt
,
D.
,
2020
,
Spon’s Architects’ and Builders’ Price Book
,
CRC Press - Taylor & Francis Group
,
Sarasota, FL
.
You do not currently have access to this content.