Abstract

Supercritical nitrogen (SCN2) has an important role in thermal equipment such as liquid air energy storage (LAES) due to its low-temperature inertness, good compressibility, richer resources, and easier-to-reach critical state, and its critical parameters are relatively lower than those of other supercritical fluids. This study focuses on the heat transfer mechanism of supercritical nitrogen in a horizontal circular tube, reveals the law of nitrogen heat transfer under different operating parameter conditions, and creates two new heat transfer correlations based on the buoyancy effect classification, with the maximum errors of 10% and 20%, respectively. The results show that increasing the mass flux and decreasing the heat flux suppress the occurrence of heat transfer deterioration (HTD), which leads to the improvement of supercritical nitrogen heat transfer; the strongest buoyancy effect at the inlet is the main reason for heat transfer deterioration occurring at the inlet. Under the condition of low mass flux, buoyancy plays a dominant role in supercritical nitrogen heat transfer, and increasing the mass flux and decreasing the heat flux can effectively mitigate the heat transfer deterioration caused by buoyancy effect dominance. When the mass flux is larger than 1590 kg/(m2 · s), the effect of the buoyancy effect on the fluid heat transfer is negligible, and the mass flux at the buoyancy-driven transition point in the range of the heat flux (q = 40–60 kW/m2) is predicted. A theoretical reference is provided for the design optimization of a liquid air energy storage system.

References

1.
Zhu
,
X.
,
Lyu
,
Z.
,
Yu
,
X.
,
Li
,
Q.
,
Cao
,
M.
, and
Ren
,
Y.
,
2020
, “
Heat Transfer Enhancement of Supercritical Nitrogen Flowing Downward in a Small Vertical Tube: Evaluation of System Parameter Effects
,”
J. Therm. Sci.
,
29
(
6
), pp.
1487
1503
.
2.
Cheng
,
H.
,
Ju
,
Y.
, and
Fu
,
Y.
,
2020
, “
Experimental and Simulation Investigation on Heat Transfer Characteristics of Supercritical Nitrogen in a new rib Tube of Open Rack Vaporizer
,”
Int. J. Refrige.
,
111
, pp.
103
112
.
3.
Alasif
,
A.
,
Pucciarelli
,
A.
,
Siddiqui
,
O.
, and
Shams
,
A.
,
2025
, “
An Overview of the Prediction Methods for the Heat Transfer of Supercritical Fluids
,”
Prog. Nucl. Energy
,
181
, p.
105654
.
4.
Zhu
,
B.
,
Zhang
,
Q.
,
Ma
,
L.
, and
Shi
,
H.
,
2025
, “
Analysis of Heat Transfer Deterioration Mechanism of Supercritical Fluid Based on VOF Two-Phase Method and Pseudo-Boiling Theory
,”
Int. J. Heat Mass Transfer
,
240
, p.
126643
.
5.
Qingshan
,
L.
,
Jun
,
G. E.
,
Baohua
,
H.
, et al
,
2019
, “
The Impact of Energy Storage Pressure on the Characteristics of Liquid Compressed Air Energy Storage Systems
,”
J. Xi'an Jiaotong Univ.
,
53
(
11
), pp.
1
9
.
6.
Yang
,
M.
,
Tong
,
Y.
,
Wang
,
J.
,
Duan
,
L.
,
Zhang
,
H.
,
Yang
,
C.
,
Wang
,
Q.
, and
Ding
,
X.
,
2025
, “
Design Optimization and Techno-Economic Performance Comparisons of Different Solar-Aided Liquid air Energy Storage Systems
,”
Therm. Sci. Eng. Prog.
,
59
, p.
103267
.
7.
Baolin
,
A.
,
Jiaxiang
,
C.
,
Junjie
,
W.
, et al
,
2019
, “
Research on the Influencing Factors of Liquefaction Rate in Liquid Air Energy Storage Systems
,”
J. Eng. Thermophys.
,
40
(
11
), pp.
2478
2482
.
8.
Xiao
,
R.
,
Chen
,
L.
,
Zhang
,
Z.
,
Lv
,
H.
, and
Hou
,
Y.
,
2025
, “
Study on the Heat Transfer Deterioration of Supercritical Nitrogen in a Vertical Tube Using a Pseudo-Boiling Model
,”
Int. J. Heat Mass Transfer
,
238
, p.
126416
.
9.
Fan
,
L.
,
Yu
,
Q.
,
Yu
,
G.
,
Yan
,
F.
, and
Liu
,
X.
,
2024
, “
Numerical Study on Convective Heat Transfer Characteristics of Supercritical Nitrogen in a Helical Cruciform Tube
,”
Appl. Therm. Eng.
,
243
, p.
122573
.
10.
Mahdavi
,
M.
,
Yousefzade
,
O.
, and
Garmabi
,
H.
,
2018
, “
A Simple Method for Preparation of Microcellular PLA/Calcium Carbonate Nanocomposite Using Supercritical Nitrogen as a Blowing Agent: Control of Microstructure
,”
Adv. Polym. Technol.
,
37
(
8
), pp.
3017
3026
.
11.
Yanhong
,
W.
,
Yujian
,
L.
,
Hongwei
,
L.
, et al
,
2024
, “
Numerical Study on Heat Transfer Deterioration of Supercritical Pressure Carbon Dioxide in Square Channels
,”
J. Beijing Univ. Aeronaut. Astronaut.
,
50
(
06
), pp.
1888
1897
.
12.
Feiyu
,
M.
,
Fei
,
C.
,
Yanqin
,
S.
, et al
,
2024
, “
Calculation Method for Turbulent Convective Heat Transfer of Supercritical Pressure Fluids in Pipes
,”
CIESC J.
,
75
(
08
), pp.
2821
2830
.
13.
Khalesi
,
J.
,
Sarunac
,
N.
, and
Razzaghpanah
,
Z.
,
2020
, “
Supercritical CO2 Conjugate Heat Transfer and Flow Analysis in a Rectangular Microchannel Subject to Uniformly Heated Substrate Wall
,”
Therm. Sci. Eng. Prog.
,
19
, p.
100596
.
14.
Shiyu
,
S.
,
Wenquan
,
J.
,
Lin
,
L.
, et al
,
2023
, “
Mechanism Study on the Anomalous Heat Transfer Behavior of Supercritical Methane in a U-Shaped Vertical Tube
,”
Propul. Technol.
,
44
(
11
), pp.
175
182
.
15.
Huang
,
X.
,
Qin
,
J.
,
Hou
,
Z.
,
Gao
,
Y.
,
Zhang
,
S.
, and
Wang
,
H.
,
2022
, “
Heat Transfer Characteristics of Supercritical Water in a Horizontal Tube Considering Local Temperature Fields: An Experimental Study
,”
Int. J. Heat Mass Transfer
,
198
, p.
123404
.
16.
Xiaocheng
,
D.
,
Yanjun
,
Z.
,
Yuanyuan
,
S.
, et al
,
2024
, “
Research on the Influence of Buoyancy Effect on the Heat Transfer Characteristics of Supercritical Water
,”
J. Eng. Thermophys.
,
45
(
07
), pp.
2019
2025
.
17.
Cheng
,
L.
,
Xu
,
J.
,
Cao
,
W.
,
Zhou
,
K.
, and
Liu
,
G.
,
2024
, “
Supercritical Carbon Dioxide Heat Transfer in Horizontal Tube Based on the Froude Number Analysis
,”
Energy
,
294
, p.
130980
.
18.
Bingguo
,
Z.
,
Jixiang
,
H.
,
Jinliang
,
X.
, et al
,
2023
, “
Heat Transfer Characteristics of Supercritical Carbon Dioxide in Diverging/Converging Tubes Under Cooling Conditions
,”
CIESC J.
,
74
(
03
), pp.
1062
1072
.
19.
Yu
,
Q.
,
Peng
,
Y.
,
Negoescu
,
C. C.
,
Wang
,
Y.
, and
Li
,
Y.
,
2021
, “
Study on Convective Heat Transfer of Supercritical Nitrogen in a Vertical Tube for Liquid air Energy Storage
,”
Energies
,
14
(
22
), p.
7773
.
20.
You
,
T.
,
Pan
,
Y.
,
Zhai
,
Y.
,
Wang
,
H.
, and
Li
,
Z.
,
2022
, “
Heat Transfer in a U-Bend Pipe Flow at Supercritical Pressure
,”
Int. J. Heat Mass Transfer
,
191
, p.
122865
.
21.
Liu
,
S.
,
Huang
,
Y.
,
Wang
,
J.
, and
Leung
,
L. K. H.
,
2018
, “
Numerical Investigation of Buoyancy Effect on Heat Transfer to Carbon Dioxide Flow in a Tube at Supercritical Pressures
,”
Int. J. Heat Mass Transfer
,
117
, pp.
595
606
.
22.
Changliang
,
H.
,
Jingqing
,
X.
,
Guangbin
,
Y.
, et al
,
2022
, “
Experimental and Numerical Simulation of 3D Thermal Flow Field of Supercritical Nitrogen in Microchannels
,”
CIESC J.
,
73
(
02
), pp.
653
662
.
23.
Xiao
,
R.
,
Chen
,
L.
,
Hou
,
Y.
,
Du
,
C.
, and
Cai
,
Y.
,
2024
, “
Experimental Study on Heat Transfer Behavior and Prediction of Heat Transfer Deterioration of Supercritical Nitrogen in Vertical Tubes
,”
Int. Commun. Heat Mass Transfer
,
155
, p.
107467
.
24.
Senlin
,
W.
,
Zhaozhi
,
L.
,
Yingjuan
,
S.
, et al
,
2022
, “
Numerical Simulation Study on Heat Transfer Deterioration of Supercritical Carbon Dioxide in a Vertical Tube
,”
CIESC J.
,
73
(
03
), pp.
1072
1082
.
25.
Wang
,
Y.
,
Lu
,
T.
,
Yang
,
R.
,
Sciacovelli
,
A.
,
Ding
,
Y.
, and
Li
,
Y.
,
2023
, “
Heat Transfer Characteristics of Near-Pseudocritical Nitrogen in Vertical Small Tubes—a new Empirical Correlation
,”
Int. J. Therm. Sci.
,
184
, p.
108001
.
26.
Wang
,
X.
,
Yang
,
L.
,
Xu
,
B.
, and
Chen
,
Z.
,
2025
, “
Experimental Investigation on Identification of Heat Transfer Deterioration and Optimization of Correlations for Supercritical CO2
,”
Int. J. Heat Mass Transfer
,
237
, p.
126444
.
27.
Martin
,
M. J.
,
Rasmussen
,
E. G.
, and
Yellapantula
,
S.
,
2020
, “
Nonlinear Heat Transfer From Particles in Supercritical Carbon Dioxide Near the Critical Point
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
034501
.
28.
Wang
,
Z.
,
Liang
,
X.
,
Chen
,
Y.
, and
Luo
,
X.
,
2023
, “
Flow and Heat Transfer Instability of Supercritical Carbon Dioxide in a Vertical Heated Tube
,”
J. Therm. Sci.
,
32
(
4
), pp.
1477
1486
.
29.
Neville
,
R. J.
, and
Parthasarathi
,
G.
,
2016
, “
Pressure Drop Studies on Supercritical Helium Flowing in Horizontal Tubes
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
1
), p. 011011.
30.
Li
,
L.
,
Jiang
,
W.-Q.
,
Li
,
Y.
,
Su
,
S.-Y.
,
Shi
,
J.-F.
, and
Yang
,
F.
,
2021
, “
Analysis and Prediction of Heat Transfer Deterioration of Supercritical Pressure Cryogenic Methane in a Vertical Tube
,”
Int. J. Heat Mass Transfer
,
180
, p.
121824
.
31.
Wang
,
Y.
,
Ren
,
J.-J.
,
Wang
,
C.
, and
Bi
,
M.-S.
,
2020
, “
Mechanism Analysis of the Buoyancy Effects on Heat Transfer of Supercritical Nitrogen in Horizontal Serpentine Tube
,”
Int. J. Heat Mass Transfer
,
152
, p.
119417
.
32.
Zhang
,
Y.
,
Zhang
,
X.
,
Yan
,
C.
,
Wu
,
W.
, and
Gao
,
E.
,
2024
, “
Numerical Investigation on Characteristics of Supercritical CO2 Heat Transfer in Vertical Circular Tubes With Circumferentially Half-Side Heating
,”
J. Therm. Sci.
,
33
(
5
), pp.
1744
1756
.
33.
Metais
,
B.
, and
Eckert
,
E. R. G.
,
1964
, “
Forced, Mixed, and Free Convection Regimes
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
295
296
.
34.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.
You do not currently have access to this content.