Abstract

We examine the modeling, simulation, and optimization of district heating systems, which are widely used for thermal transport using steam or hot water as a carrier. We propose a generalizable framework to specify network models and scenario parameters, and develop an optimization method for evaluating system states including pressures, fluid flowrates, and temperatures throughout the network. The network modeling includes pipes, thermal plants, pumps, and passive or controllable loads as system components. We propose basic models for thermodynamic fluid transport and enforce the balance of physical quantities in steady-state flow over co-located outgoing and return networks. We formulate an optimization problem with steam and hot water as the outgoing and return carriers, as in legacy twentieth century systems. The physical laws and engineering limitations are specified for each component type, and the thermal network flow optimization problem is formulated and solved for a realistic test network under several scenarios.

References

1.
Hinkelman
,
K.
,
Anbarasu
,
S.
,
Wetter
,
M.
,
Gautier
,
A.
, and
Zuo
,
W.
,
2022
, “
A Fast and Accurate Modeling Approach for Water and Steam Thermodynamics With Practical Applications in District Heating System Simulation
,”
Energy
,
254
(
Part A
), p.
124227
.
2.
ICF LLC
,
2018
, “US District Energy Services Market Characterization,” US Energy Information Administration, Washington, DC, Technical Report.
3.
Novitsky
,
N. N.
,
Shalaginova
,
Z. I.
,
Alekseev
,
A. A.
,
Tokarev
,
V. V.
,
Grebneva
,
O. A.
,
Lutsenko
,
A. V.
,
Vanteeva
,
O. V.
, et al.,
2020
, “
Smarter Smart District Heating
,”
Proc. IEEE
,
108
(
9
), pp.
1596
1611
.
4.
Schwele
,
A.
,
Arrigo
,
A.
,
Vervaeren
,
C.
,
Kazempour
,
J.
, and
Vallée
,
F.
,
2020
, “
Coordination of Electricity, Heat, and Natural Gas Systems Accounting for Network Flexibility
,”
Electric Power Syst. Res.
,
189
, p.
106776
.
5.
Marconcini
,
R.
, and
Neri
,
G.
,
1978
, “
Numerical Simulation of a Steam Pipeline Network
,”
Geothermics
,
7
(
1
), pp.
17
27
.
6.
Sartor
,
K.
, and
Dewalef
,
P.
,
2017
, “
Experimental Validation of Heat Transport Modelling in District Heating Networks
,”
Energy
,
137
, pp.
961
968
.
7.
Gabrielaitiene
,
I.
, and
Sunden
,
B.
,
2006
, “
Dynamic Performance of District Heating System in Madumvej, Denmark
,”
Proceedings of the 10th International Symposium on District Heating and Cooling
,
Hanover, Germany
,
Sept. 3–5,
pp.
20
29
.
8.
Luo
,
X.
,
Yuan
,
M.
,
Wang
,
H.
,
Jia
,
Y.
, and
Wu
,
F.
,
2012
, “
On Steam Pipe Network Modeling and Flow Rate Calculation
,”
Proc. Eng.
,
29
, pp.
1897
1903
.
9.
Wang
,
J.
,
Zhou
,
Z.
, and
Zhao
,
J.
,
2016
, “
A Method for the Steady-State Thermal Simulation of District Heating Systems and Model Parameters Calibration
,”
Energy Convers. Manage.
,
120
, pp.
294
305
.
10.
Stevanovic
,
V. D.
,
Prica
,
S.
,
Maslovaric
,
B.
,
Zivkovic
,
B.
, and
Nikodijevic
,
S.
,
2007
, “
Efficient Numerical Method for District Heating System Hydraulics
,”
Energy Convers. Manage.
,
48
(
5
), pp.
1536
1543
.
11.
Leśko
,
M.
, and
Bujalski
,
W.
,
2017
, “
Modeling of District Heating Networks for the Purpose of Operational Optimization With Thermal Energy Storage
,”
Arch. Thermodyn.
,
38
(
4
), pp.
139
163
.
12.
Jie
,
P.
,
Zhu
,
N.
, and
Li
,
D.
,
2015
, “
Operation Optimization of Existing District Heating Systems
,”
Appl. Therm. Eng.
,
78
, pp.
278
288
.
13.
Dahash
,
A.
,
Mieck
,
S.
,
Ochs
,
F.
, and
Krautz
,
H. J.
,
2019
, “
A Comparative Study of Two Simulation Tools for the Technical Feasibility in Terms of Modeling District Heating Systems: An Optimization Case Study
,”
Simul. Model. Practice Theory
,
91
, pp.
48
68
.
14.
Bøhm
,
B.
,
2000
, “
On Transient Heat Losses From Buried District Heating Pipes
,”
Int. J. Energy Res.
,
24
(
15
), pp.
1311
1334
.
15.
Chertkov
,
M.
, and
Novitsky
,
N. N.
,
2019
, “
Thermal Transients in District Heating Systems
,”
Energy
,
184
, pp.
22
33
.
16.
Allen
,
A.
,
Henze
,
G.
,
Baker
,
K.
,
Pavlak
,
G.
, and
Murphy
,
M.
,
2022
, “
An Optimization Framework for the Network Design of Advanced District Thermal Energy Systems
,”
Energy Convers. Manage.
,
266
, p.
115839
.
17.
Bordin
,
C.
,
Gordini
,
A.
, and
Vigo
,
D.
,
2016
, “
An Optimization Approach for District Heating Strategic Network Design
,”
Eur. J. Operat. Res.
,
252
(
1
), pp.
296
307
.
18.
Blommaert
,
M.
,
Wack
,
Y.
, and
Baelmans
,
M.
,
2020
, “
An Adjoint Optimization Approach for the Topological Design of Large-Scale District Heating Networks Based on Nonlinear Models
,”
Appl. Energy
,
280
, p.
116025
.
19.
Krug
,
R.
,
Mehrmann
,
V.
, and
Schmidt
,
M.
,
2021
, “
Nonlinear Optimization of District Heating Networks
,”
Optim. Eng.
,
22
(
2
), pp.
783
819
.
20.
Hari
,
S. K. K.
,
Sundar
,
K.
,
Srinivasan
,
S.
,
Zlotnik
,
A.
, and
Bent
,
R.
,
2021
, “
Operation of Natural Gas Pipeline Networks With Storage Under Transient Flow Conditions
,”
IEEE Trans. Control Syst. Technol.
,
30
(
2
), pp.
667
679
.
21.
Srinivasan
,
S.
,
Sundar
,
K.
,
Gyrya
,
V.
, and
Zlotnik
,
A.
,
2022
, “
Numerical Solution of the Steady-State Network Flow Equations for a Non-Ideal Gas
,”
IEEE Trans. Control Netw. Syst.
,
10
(
3
), pp.
1449
1461
.
22.
Haar
,
L.
,
Kell
,
G. S.
, and
Gallagher
,
J. S.
,
1984
,
NBS/NRC Steam Tables
,
CRC Press
,
Boca Raton, FL
.
23.
Lubin
,
M.
,
Dowson
,
O.
,
Dias Garcia
,
J.
,
Huchette
,
J.
,
Legat
,
B.
, and
Vielma
,
J. P.
,
2023
, “
JuMP 1.0: Recent Improvements to a Modeling Language for Mathematical Optimization
,”
Math. Program. Comput.
,
15
, pp.
581
589
.
24.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of An Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program.
,
106
, pp.
25
57
.
25.
Averfalk
,
H.
,
Werner
,
S.
,
Felsmann
,
C.
,
Rühling
,
K.
,
Wiltshire
,
R.
, and
Svendsen
,
S.
,
2017
, “Transformation Roadmap From High to Low Temperature District Heating Systems: Annex XI Final Report”.
26.
Guelpa
,
E.
,
Capone
,
M.
,
Sciacovelli
,
A.
,
Vasset
,
N.
,
Baviere
,
R.
, and
Verda
,
V.
,
2023
, “
Reduction of Supply Temperature in Existing District Heating: A Review of Strategies and Implementations
,”
Energy
,
262
, p.
125363
.
You do not currently have access to this content.