Abstract

A battery thermal management system based on a charging station heat pump system is proposed to improve battery charging efficiency during high-power direct current charging. The system provides coolant of appropriate temperature through the charging station heat pump system. It enables the battery to be charged at the optimal temperature for charging, which improves the charging efficiency and reduces the charging time. The two system models are modeled and analyzed using numerical simulation software, and the temperature characteristics and charging time of the proposed system and the original battery thermal management system based on the electric vehicle heat pump system are analyzed under five different temperature conditions. The results show that the proposed system has a higher efficiency, through different ambient temperatures, we can find that at a low temperature of −20 °C, compared with the original system, the efficiency of the system is particularly significant, and can save 24.6% charging time. At various ambient temperatures, the maximum temperature of the battery can be maintained at 50 °C to maintain a good state. Comparing the charging time for the power battery at each stage, the proposed system mainly reduces the charging time in the range of 0–20% of the battery state of charge compared to the original system.

References

1.
Changxu
,
Z.
,
Zixiao
,
N.
,
Automobile
,
S. O.
, and
University
,
C.
,
2019
, “
Comparative Analysis of Ternary Lithium Battery and LiFePO4 Battery
,”
Automob. Appl. Technol.
,
2019
(
23
), pp.
28
29
.
2.
Drees
,
R.
,
Lienesch
,
F.
, and
Kurrat
,
M.
,
2022
, “
Durable Fast Charging of Lithium-Ion Batteries Based on Simulations With an Electrode Equivalent Circuit Model
,”
Batteries
,
8
(
4
), p.
30
.
3.
Wei
,
Z.
,
Quan
,
Z.
,
Wu
,
J.
,
Li
,
Y.
,
Pou
,
J.
, and
Zhong
,
H.
,
2021
, “
Deep Deterministic Policy Gradient-DRL Enabled Multiphysics-Constrained Fast Charging of Lithium-Ion Battery
,”
IEEE Trans. Ind. Electron.
,
69
(
3
), pp.
2588
2598
.
4.
Bose
,
B.
,
Garg
,
A.
,
Panigrahi
,
B. K.
, and
Kim
,
J.
,
2022
, “
Study on Li-Ion Battery Fast Charging Strategies: Review, Challenges and Proposed Charging Framework
,”
J. Energy Storage
,
55
, p.
105507
.
5.
Qin
,
Y.
,
Zuo
,
P.
,
Chen
,
X.
,
Yuan
,
W.
,
Huang
,
R.
,
Yang
,
X.
,
Du
,
J.
,
Lu
,
L.
,
Han
,
X.
, and
Ouyang
,
M.
,
2022
, “
An Ultra-Fast Charging Strategy for Lithium-Ion Battery at Low Temperature Without Lithium Plating
,”
J. Energy Chem.
,
72
, pp.
442
452
.
6.
Fan
,
Z.
,
Fu
,
Y.
,
Liang
,
H.
,
Gao
,
R.
, and
Liu
,
S.
,
2023
, “
A Module-Level Charging Optimization Method of Lithium-Ion Battery Considering Temperature Gradient Effect of Liquid Cooling and Charging Time
,”
Energy
,
256
, p.
126331
.
7.
Khezri
,
R.
,
Razmi
,
P.
,
Mahmoudi
,
A.
,
Bidram
,
A.
, and
Khooban
,
M. H.
,
2022
, “
Machine Learning-Based Sizing of a Renewable-Battery System for Grid-Connected Homes With Fast-Charging Electric Vehicle
,”
IEEE Trans. Sustainable Energy
,
14
(
2
), pp.
837
848
.
8.
Wei
,
Z.
,
Yang
,
X.
,
Li
,
Y.
,
He
,
H.
,
Li
,
W.
, and
Sauer
,
D. U.
,
2023
, “
Machine Learning-Based Fast Charging of Lithium-Ion Battery by Perceiving and Regulating Internal Microscopic States
,”
Energy Storage Mater.
,
56
, pp.
62
75
.
9.
Bose
,
B.
,
Shaosen
,
S.
,
Li
,
W.
,
Gao
,
L.
,
Wei
,
K.
, and
Garg
,
A.
,
2023
, “
Cloud-Battery Management System Based Health-Aware Battery Fast Charging Architecture Using Error-Correction Strategy for Electric Vehicles
,”
Sustainable Energy Grids Netw.
,
36
, p.
101197
.
10.
Wassiliadis
,
N.
,
Kriegler
,
J.
,
Gamra
,
K. A.
, and
Lienkamp
,
M.
,
2023
, “
Model-Based Health-Aware Fast Charging to Mitigate the Risk of Lithium Plating and Prolong the Cycle Life of Lithium-Ion Batteries in Electric Vehicles
,”
J. Power Sources
,
561
, p.
232586
.
11.
Zhang
,
Z.
,
Min
,
H.
,
Yu
,
Y.
,
Cao
,
Q.
,
Li
,
M.
, and
Yan
,
K.
,
2022
, “
An Optimal Thermal Management System Heating Control Strategy for Electric Vehicles Under Low-Temperature Fast Charging Conditions
,”
Appl. Therm. Eng.
,
207
, p.
118123
.
12.
Yang
,
X.
,
He
,
H.
,
Wei
,
Z.
,
Wang
,
R.
,
Xu
,
K.
, and
Zhang
,
D.
,
2023
, “
Enabling Safety-Enhanced Fast Charging of Electric Vehicles Via Soft Actor Critic-Lagrange DRL Algorithm in a Cyber-Physical System
,”
Appl. Energy
,
329
, p.
120272
.
13.
Montenegro
,
L. E. G.
, and
Pico
,
H. N. V.
,
2023
, “
A C-Heating and Fast-Charging Power Requirements of EV Battery Packs in Subzero Temperature
,”
IEEE Trans. Transp. Electrif.
,
9
(
3
), pp.
3936
3946
.
14.
Paudel
,
D.
, and
Das
,
T. K.
,
2023
, “
A Deep Reinforcement Learning Approach for Power Management of Battery-Assisted Fast-Charging EV Hubs Participating in Day-Ahead and Real-Time Electricity Markets
,”
Energy
,
283
, p.
129097
.
15.
Liu
,
W.
,
Sun
,
X.
,
Wu
,
H.
,
He
,
Z.
, and
Yang
,
G.
,
2016
, “
A Multistage Current Charging Method for Li-Ion Battery Considering Balance of Internal Consumption and Charging Speed
,”
2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia)
,
Hefei, China
,
May 22–26
, pp.
1401
1406
.
16.
Khan
,
A. B.
, and
Choi
,
W.
,
2018
, “
Optimal Charge Pattern for the High-Performance Multistage Constant Current Charge Method for the Li-Ion Batteries
,”
IEEE Trans. Energy Convers.
,
33
(
3
), pp.
1132
1140
.
17.
Jianxiao
,
Y. E.
,
Chunmei
,
Y. U.
, and
Liang
,
Q.
,
2018
, “
Research on Quick Charging Technology for Electric Vehicle Lithium Battery
,”
Electric Drive
,
48
(
6
), pp.
93
96
.
18.
Li
,
Y.
,
Li
,
K.
,
Xie
,
Y.
,
Liu
,
J.
,
Fu
,
C.
, and
Liu
,
B.
,
2020
, “
Optimized Charging of Lithium-Ion Battery for Electric Vehicles: Adaptive Multistage Constant Current–Constant Voltage Charging Strategy
,”
Renewable Energy
,
146
, pp.
2688
2699
.
19.
Wang
,
Y.
,
Zhou
,
C.
, and
Chen
,
Z.
,
2022
, “
Optimization of Battery Charging Strategy Based on Nonlinear Model Predictive Control
,”
Energy
,
241
, p.
122877
.
20.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energy Convers. Manage.
,
89
, pp.
387
395
.
21.
Tang
,
A.
,
Li
,
J.
,
Lou
,
L.
,
Shan
,
C.
, and
Yuan
,
X.
,
2019
, “
Optimization Design and Numerical Study on Water Cooling Structure for Power Lithium Battery Pack
,”
Appl. Therm. Eng.
,
159
, p.
113760
.
22.
Shang
,
Z.
,
Qi
,
H.
,
Liu
,
X.
,
Ouyang
,
C.
, and
Wang
,
Y.
,
2019
, “
Structural Optimization of Lithium-Ion Battery for Improving Thermal Performance Based on a Liquid Cooling System
,”
Int. J. Heat Mass Transfer
,
130
, pp.
33
41
.
23.
Nieto
,
N.
,
Díaz
,
L.
,
Gastelurrutia
,
J.
,
Blanco
,
F.
,
Ramos
,
J. C.
, and
Rivas
,
A.
,
2014
, “
Novel Thermal Management System Design Methodology for Power Lithium-Ion Battery
,”
J. Power Sources
,
272
, pp.
291
302
.
24.
Yang
,
Y.
,
Wei
,
X.
,
Liu
,
Y.
,
Dai
,
H.
,
Zhu
,
J.
, and
Fang
,
Q.
,
2016
, “
A Research on the AC Heating of Automotive Lithium-Ion Battery
,”
Automot. Eng.
,
38
(
7
), pp.
901
908
.
25.
Sheng
,
L.
,
Su
,
L.
,
Zhang
,
H.
,
Fang
,
Y.
,
Xu
,
H.
, and
Ye
,
W.
,
2019
, “
An Improved Calorimetric Method for Characterizations of the Specific Heat and the Heat Generation Rate in a Prismatic Lithium Ion Battery Cell
,”
Energy Convers. Manage.
,
180
, pp.
724
732
.
26.
Saw
,
L. H.
,
Somasundaram
,
K.
,
Ye
,
Y.
, and
Tay
,
A. A. O.
,
2014
, “
Electro-Thermal Analysis of Lithium Iron Phosphate Battery for Electric Vehicles
,”
J. Power Sources
,
249
, pp.
281
238
.
27.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), p.
5
.
28.
Chen
,
S. C.
,
Wan
,
C. C.
, and
Wang
,
Y. Y.
,
2005
, “
Thermal Analysis of Lithium-Ion Batteries
,”
J. Power Sources
,
140
(
1
), pp.
111
124
.
29.
Feng
,
Y.
,
2020
, “
Simulation Analysis of Liquid Cooled Lithium-Ion Batteries for Electric Vehicles
,”
M.Sc. dissertation
,
Nanchang University
,
Jiangxi, China
.
You do not currently have access to this content.