Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Advancements in flexible electronics demand innovative thermal management solutions that are both flexible and efficient. A fully 3D-printed polymeric heat pipe with high flexibility and low cost was demonstrated in this study. This wickless gravity-assisted heat pipe was fabricated using a commercial stereolithography 3D printer and soft elastomer. An interconnected pocket array was designed to reduce the wall thickness to 0.1 mm. The post-cured heat pipe can be flexed and twisted without tearing or permanent deformation. Experimental studies were conducted to characterize the performance of the heat pipe in vertical and 90-deg flexed configurations. In addition, high-speed imaging was applied to visualize the boiling process within the heat pipe. By charging with a compatible dielectric fluid HFE-7100, the present heat pipe achieved 18.6 W heat dissipation over a hot spot with an area of 25 × 25 mm2, representing about 125% higher heat flux than most reported fully polymeric heat pipes using the same working fluid. When placed vertically, the result showed an effective thermal conductivity of up to 102.7 W/(m · K). The visualization indicated little difference in bubble dynamics between the vertical and flexed configurations owing to a high charging mass. The heat pipe startup occurred at 5.4 W, and no dryout was observed within the test range for either configuration. Finally, a comparison of the present study and other reported fully polymeric flexible heat pipes was made, and future optimization of the heat pipe performance was discussed.

References

1.
Mochizuki
,
M.
,
Nguyen
,
T.
,
Mashiko
,
K.
,
Saito
,
Y.
,
Nguyen
,
T.
, and
Wuttijumnong
,
V.
,
2011
, “
A Review of Heat Pipe Application Including New Opportunities
,”
Front. Heat Pipes
,
2
(
1
), p.
013001
.
2.
Chaudhry
,
H. N.
,
Hughes
,
B. R.
, and
Ghani
,
S. A.
,
2012
, “
A Review of Heat Pipe Systems for Heat Recovery and Renewable Energy Applications
,”
Renew. Sustain. Energy Rev.
,
16
(
4
), pp.
2249
2259
.
3.
Yau
,
Y. H.
, and
Ahmadzadehtalatapeh
,
M.
,
2010
, “
A Review on the Application of Horizontal Heat Pipe Heat Exchangers in Air Conditioning Systems in the Tropics
,”
Appl. Therm. Eng.
,
30
(
2–3
), pp.
77
84
.
4.
Tian
,
Y.
,
Yang
,
Z.
,
Liu
,
Y.
,
Cai
,
X.
, and
Shen
,
Y.
,
2021
, “
Long-Term Thermal Stability and Settlement of Heat Pipe-Protected Highway Embankment in Warm Permafrost Regions
,”
Eng. Geol.
,
292
, p.
106269
.
5.
Kim
,
K.-S.
,
Won
,
M.-H.
,
Kim
,
J.-W.
, and
Back
,
B.-J.
,
2003
, “
Heat Pipe Cooling Technology for Desktop PC CPU
,”
Appl. Therm. Eng.
,
23
(
9
), pp.
1137
1144
.
6.
Elnaggar
,
M.
, and
Edwan
,
E.
,
2016
,
Electronics Cooling
, 1st ed.,
Intech
,
Rijeka, Croatia
,
Chap. 6
.
7.
Thawkar
,
V.
, and
Dhoble
,
A.
,
2023
, “
A Review of Thermal Management Methods for Electric Vehicle Batteries Based on Heat Pipes and PCM
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
2
), p.
90
.
8.
Smith
,
J.
,
Singh
,
R.
,
Hinterberger
,
M.
, and
Mochizuki
,
M.
,
2018
, “
Battery Thermal Management System for Electric Vehicle Using Heat Pipes
,”
Int. J. Therm. Sci.
,
134
, pp.
517
529
.
9.
Reay
,
D.
,
McGlen
,
R.
, and
Kew
,
P.
,
2013
,
Heat Pipes: Theory, Design and Applications
, 6th ed.,
Butterworth-Heinemann
,
Oxford, UK
.
10.
Gibbons
,
M. J.
,
Marengo
,
M.
, and
Persoons
,
T.
,
2021
, “
A Review of Heat Pipe Technology for Foldable Electronic Devices
,”
Appl. Therm. Eng.
,
194
, p.
117087
.
11.
Schweickart
,
R. B.
, and
Buchko
,
M. M.
,
1998
, “
Flexible Heat Pipes for CCD Cooling on the Advanced Camera for Surveys
,”
Proc. Space Telesc. Instrum. V SPIE
,
3356
, pp.
292
300
.
12.
Huang
,
J.
,
Zhou
,
W.
,
Xiang
,
J.
,
Liu
,
C.
,
Gao
,
Y.
,
Li
,
S.
, and
Ling
,
W.
,
2020
, “
Development of Novel Flexible Heat Pipe With Multistage Design Inspired by Structure of Human Spine
,”
Appl. Therm. Eng.
,
175
, p.
115392
.
13.
Yang
,
C.
,
Song
,
C.
,
Shang
,
W.
,
Tao
,
P.
, and
Deng
,
T.
,
2015
, “
Flexible Heat Pipes With Integrated Bioinspired Design
,”
Prog. Nat. Sci. Mater. Int.
,
25
(
1
), pp.
51
57
.
14.
Yang
,
C.
,
Chang
,
C.
,
Song
,
C.
,
Shang
,
W.
,
Wu
,
J.
,
Tao
,
P.
, and
Deng
,
T.
,
2016
, “
Fabrication and Performance Evaluation of Flexible Heat Pipes for Potential Thermal Control of Foldable Electronics
,”
Appl. Therm. Eng.
,
95
, pp.
445
453
.
15.
Qu
,
J.
,
Li
,
X.
,
Cui
,
Y.
, and
Wang
,
Q.
,
2017
, “
Design and Experimental Study on a Hybrid Flexible Oscillating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
107
, pp.
640
645
.
16.
Kang
,
Z.
,
Jiang
,
S.
,
Hong
,
Y.
, and
Fan
,
J.
,
2022
, “
Squid-Like Soft Heat Pipe for Multiple Heat Transport
,”
Droplet
,
1
(
2
), pp.
182
191
.
17.
Der
,
O.
,
Marengo
,
M.
, and
Bertola
,
V.
,
2019
, “
Thermal Performance of Pulsating Heat Stripes Built With Plastic Materials
,”
ASME J. Heat Transfer.
,
141
(
9
), p.
091808
.
18.
Hideyama
,
F.
, and
Koito
,
Y.
,
2019
, “
Heat Transfer Characteristics of an ABS Polymer Pulsating Heat Pipe Fabricated by a 3-D Printer
,”
Thermal Sci. Eng.
,
27
(
2
), pp.
59
66
.
19.
Koito
,
Y.
, and
Kawaji
,
M.
,
2017
, “
Performance of a Pulsating Heat Pipe Fabricated With a 3-D Printer
,”
Proceedings of the ASME 2017 Heat Transfer Summer Conference. Volume 2: Heat Transfer Equipment; Heat Transfer in Multiphase Systems; Heat Transfer Under Extreme Conditions; Nanoscale Transport Phenomena; Theory and Fundamental Research in Heat Transfer; Thermophysical Properties; Transport Phenomena in Materials Processing and Manufacturing
,
Bellevue, WA
,
July 9–12
.
20.
McDaniels
,
D.
, and
Peterson
,
G. P.
,
2001
, “
Investigation of Polymer Based Micro Heat Pipes for a Flexible Spacecraft Radiator
,”
Proceedings of the ASME 2001 International Mechanical Engineering Congress and Exposition. Heat Transfer: Volume 5—Computational, Aerospace and Environmental Heat Transfer
,
New York
,
Nov. 11–16
, New York, pp.
423
433
.
21.
Oshman
,
C.
,
Li
,
Q.
,
Liew
,
L.-A.
,
Yang
,
R.
,
Bright
,
V. M.
, and
Lee
,
Y. C.
,
2012
, “
Flat Flexible Polymer Heat Pipes
,”
J. Micromech. Microeng.
,
23
(
1
), p.
015001
.
22.
Oshman
,
C.
,
Shi
,
B.
,
Li
,
C.
,
Yang
,
R.
,
Lee
,
Y.
,
Peterson
,
G.
, and
Bright
,
V. M.
,
2011
, “
The Development of Polymer-Based Flat Heat Pipes
,”
J. Microelectromech. Syst.
,
20
(
2
), pp.
410
417
.
23.
Shih
,
W.-P.
,
Wu
,
G.-W.
, and
Chen
,
S.-L.
,
2012
, “
Lamination and Characterization of a Polyethylene-Terephthalate Flexible Micro Heat Pipe
,”
Front. Heat Pipes
,
3
(
2
), p.
023003
.
24.
Hsieh
,
S.-S.
, and
Yang
,
Y.-R.
,
2013
, “
Design, Fabrication and Performance Tests for a Polymer-Based Flexible Flat Heat Pipe
,”
Energy Convers. Manage.
,
70
, pp.
10
19
.
25.
Lim
,
J.
, and
Kim
,
S. J.
,
2018
, “
Fabrication and Experimental Evaluation of a Polymer-Based Flexible Pulsating Heat Pipe
,”
Energy Convers. Manage.
,
156
, pp.
358
364
.
26.
Jung
,
C.
,
Lim
,
J.
, and
Kim
,
S. J.
,
2020
, “
Fabrication and Evaluation of a High-Performance Flexible Pulsating Heat Pipe Hermetically Sealed With Metal
,”
Int. J. Heat Mass Transfer
,
149
, p.
119180
.
27.
Gonzalez
,
G.
,
Roppolo
,
I.
,
Pirri
,
C. F.
, and
Chiappone
,
A.
,
2022
, “
Current and Emerging Trends in Polymeric 3D Printed Microfluidic Devices
,”
Addit. Manuf.
,
55
, p.
102867
.
28.
Oliveira
,
J.
,
Correia
,
V.
,
Castro
,
H.
,
Martins
,
P.
, and
Lanceros-Mendez
,
S.
,
2018
, “
Polymer-Based Smart Materials by Printing Technologies: Improving Application and Integration
,”
Addit. Manuf.
,
21
, pp.
269
283
.
29.
Han
,
Z.
, and
Chang
,
C.
,
2023
, “
Fabrication and Thermal Performance of a Polymer-Based Flexible Oscillating Heat Pipe via 3D Printing Technology
,”
Polymers
,
15
(
2
), p.
414
.
30.
Huang
,
G.
,
Li
,
W.
,
Zhong
,
G.
,
Abdulshaheed
,
A. A.
, and
Li
,
C.
,
2021
, “
Optimizing L-Shaped Heat Pipes With Partially-Hybrid Mesh-Groove Wicking Structures
,”
Int. J. Heat Mass Transfer
,
170
, p.
120926
.
31.
3M
,
2022
, “Heat Transfer Applications Using 3M Novec Engineered Fluids,” https://multimedia.3m.com/mws/media/1091997O/3m-novec-engineered-fluids-for-heat-transfer-line-card.pdf, Accessed July 1, 2024.
32.
Formlabs
,
2023
, “Flexible and Elastic Resin,” https://formlabs.com/materials/flexible-elastic/, Accessed July 1, 2024.
33.
Taylor
,
J. R.
,
2022
,
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
, 3rd ed.,
University Science Books
,
Dulles, VA
,
Chap. 6
.
34.
Ma
,
H.
,
2015
,
Oscillating Heat Pipes
, 1st ed.,
Springer
,
New York
.
You do not currently have access to this content.