Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Phase change materials (PCMs) are promising for storing thermal energy as latent heat, addressing power shortages. Growing demand for concentrated solar power systems has spurred the development of latent thermal energy storage, offering steady temperature release and compact heat exchanger designs. This study explores melting and solidification in a hairpin-type heat exchanger (HEX) using three PCMs (RT 50, RT 27, and RT 35). A 3D model of the HEX is drawn using Ansys-workbench. High-temperature fluid/low-temperature fluid (HTF/LTF) with Stefan numbers (0.44, 0.35, and 0.23) flows through the inner pipe to charge the outer pipe's PCM. The Enthalpy-porosity model is used to study the melting and solidification of various PCMs, and the results were compared. Also, individual thermophysical properties that affect the heat transfer during the melting and solidification process have been discussed. It is observed that low thermal conductivity material with high latent heat is preferred for cold climates. In this study, RT 27 excels in cold climates due to extended solidification time, while RT 50 is effective in tropical regions due to its high melting points and lower latent heat.

References

1.
Chastas
,
P.
,
Theodosiou
,
T.
,
Kontoleon
,
K. J.
, and
Bikas
,
D.
,
2018
, “
Normalising and Assessing Carbon Emissions in the Building Sector: A Review on the Embodied CO2 Emissions of Residential Buildings
,”
Build. Environ.
,
130
, pp.
212
226
.
2.
Alazwari
,
M. A.
,
Abu-Hamdeh
,
N. H.
,
Khoshaim
,
A.
,
Almitani
,
K. H.
, and
Karimipour
,
A.
,
2021
, “
Using Phase Change Material as an Energy-Efficient Technique to Reduce Energy Demand in Air Handling Unit Integrated With Absorption Chiller and Recovery Unit–Applicable for High Solar-Irradiance Regions
,”
J. Energy Storage
,
42
, p.
103080
.
3.
Sohani
,
A.
,
Shahverdian
,
M. H.
,
Sayyaadi
,
H.
,
Samiezadeh
,
S.
,
Doranehgard
,
M. H.
,
Nizetic
,
S.
, and
Karimi
,
N.
,
2021
, “
Selecting the Best Nanofluid Type for a Photovoltaic Thermal (PV/T) System Based on Reliability, Efficiency, Energy, Economic, and Environmental Criteria
,”
J. Taiwan Inst. Chem. Eng.
,
124
, pp.
351
358
.
4.
Farouk
,
N.
,
El-Rahman
,
M. A.
,
Sharifpur
,
M.
, and
Guo
,
W.
,
2022
, “
Assessment of CO2 Emissions Associated With HVAC System in Buildings Equipped With Phase Change Materials
,”
J. Build. Eng.
,
51
, p.
104236
.
5.
Akhtari
,
M. R.
,
Shayegh
,
I.
, and
Karimi
,
N.
,
2020
, “
Techno-Economic Assessment and Optimization of a Hybrid Renewable Earth—Air Heat Exchanger Coupled With Electric Boiler, Hydrogen, Wind and PV Configurations
,”
Renew. Energy
,
148
, pp.
839
851
.
6.
Zhao
,
J.
, and
Li
,
S.
,
2022
, “
Life Cycle Cost Assessment and Multi-Criteria Decision Analysis of Environment-Friendly Building Insulation Materials—A Review
,”
Energy Build.
,
254
, p.
111582
.
7.
Karami
,
R.
, and
Kamkari
,
B.
,
2020
, “
Experimental Investigation of the Effect of Perforated Fins on Thermal Performance Enhancement of Vertical Shell and Tube Latent Heat Energy Storage Systems
,”
Energy Convers. Manag.
,
210
, p.
112679
.
8.
Shabgard
,
H.
,
Song
,
L.
, and
Zhu
,
W.
,
2018
, “
Heat Transfer and Exergy Analysis of a Novel Solar-Powered Integrated Heating, Cooling, and Hot Water System With Latent Heat Thermal Energy Storage
,”
Energy Convers. Manag.
,
175
, pp.
121
131
.
9.
Ghosh
,
D.
,
Ghose
,
J.
,
Datta
,
P.
,
Kumari
,
P.
, and
Paul
,
S.
,
2022
, “
Strategies for Phase Change Material Application in Latent Heat Thermal Energy Storage Enhancement: Status and Prospect
,”
J. Energy Storage
,
53
, p.
105179
.
10.
Suppes
,
G. J.
,
Goff
,
M. J.
, and
Lopes
,
S.
,
2003
, “
Latent Heat Characteristics of Fatty Acid Derivatives Pursuant Phase Change Material Applications
,”
Chem. Eng. Sci.
,
58
(
9
), pp.
1751
1763
.
11.
Ling
,
Z.
,
Wen
,
X.
,
Zhang
,
Z.
,
Fang
,
X.
, and
Xu
,
T.
,
2016
, “
Warming-Up Effects of Phase Change Materials on Lithium-Ion Batteries Operated at Low Temperatures
,”
Energy Technol.
,
4
(
9
), pp.
1071
1076
.
12.
Atinafu
,
D. G.
,
Ok
,
Y. S.
,
Kua
,
H. W.
, and
Kim
,
S.
,
2020
, “
Thermal Properties of Composite Organic Phase Change Materials (PCMs): A Critical Review on Their Engineering Chemistry
,”
Appl. Therm. Eng.
,
181
, p.
115960
.
13.
Ashagre
,
T. B.
, and
Rakshit
,
D.
,
2022
, “
Study on Flow and Heat Transfer Characteristics of Encapsulated Phase Change Material (EPCM) Slurry in Double-Pipe Heat Exchanger
,”
J. Energy Storage
,
46
, p.
103931
.
14.
Wang
,
Y.
,
Zhang
,
Y.
,
Yang
,
W.
, and
Ji
,
H.
,
2015
, “
Selection of Low-Temperature Phase-Change Materials for Thermal Energy Storage Based on the VIKOR Method
,”
Energy Technol.
,
3
(
1
), pp.
84
89
.
15.
Huang
,
X.
,
Zhu
,
C.
,
Lin
,
Y.
, and
Fang
,
G.
,
2019
, “
Thermal Properties and Applications of Microencapsulated PCM for Thermal Energy Storage: A Review
,”
Appl. Therm. Eng.
,
147
, pp.
841
855
.
16.
Liu
,
H.
,
Wang
,
X.
, and
Wu
,
D.
,
2019
, “
Innovative Design of Microencapsulated Phase Change Materials for Thermal Energy Storage and Versatile Applications: A Review
,”
Sustain. Energy Fuels
,
3
(
5
), pp.
1091
1149
.
17.
Tofani
,
K.
, and
Tiari
,
S.
,
2021
, “
Nano-Enhanced Phase Change Materials in Latent Heat Thermal Energy Storage Systems: A Review
,”
Energies
,
14
(
13
), p.
3821
.
18.
Arshad
,
A.
,
Jabbal
,
M.
,
Yan
,
Y.
, and
Darkwa
,
J.
,
2019
, “
The Micro-/Nano-PCMs for Thermal Energy Storage Systems: A State of Art Review
,”
Int. J. Energy Res.
,
43
(
11
), pp.
5572
5620
.
19.
Jouhara
,
H.
,
Żabnieńska-Góra
,
A.
,
Khordehgah
,
N.
,
Ahmad
,
D.
, and
Lipinski
,
T.
,
2020
, “
Latent Thermal Energy Storage Technologies and Applications: A Review
,”
Int. J. Thermofluids
,
5–6
, p.
100039
.
20.
Qureshi
,
Z. A.
,
Ali
,
H. M.
, and
Khushnood
,
S.
,
2018
, “
Recent Advances on Thermal Conductivity Enhancement of Phase Change Materials for Energy Storage System: A Review
,”
Int. J. Heat Mass Transf.
,
127
, pp.
838
856
.
21.
Liu
,
C.
,
Rao
,
Z.
, and
Li
,
Y.
,
2016
, “
Composites Enhance Heat Transfer in Paraffin/Melamine Resin Microencapsulated Phase Change Materials
,”
Energy Technol.
,
4
(
4
), pp.
496
501
.
22.
Cao
,
X.
,
Zhang
,
N.
,
Yuan
,
Y.
, and
Luo
,
X.
,
2020
, “
Thermal Performance of Triplex-Tube Latent Heat Storage Exchanger: Simultaneous Heat Storage and Hot Water Supply via Condensation Heat Recovery
,”
Renew. Energy
,
157
, pp.
616
625
.
23.
Mozafari
,
M.
,
Lee
,
A.
, and
Cheng
,
S.
,
2022
, “
A Novel Dual-PCM Configuration to Improve Simultaneous Energy Storage and Recovery in Triplex-Tube Heat Exchanger
,”
Int. J. Heat Mass Transf.
,
186
, p.
122420
.
24.
Nie
,
C.
,
Liu
,
J.
, and
Deng
,
S.
,
2021
, “
Effect of Geometric Parameter and Nanoparticles on PCM Melting in a Vertical Shell-Tube System
,”
Appl. Therm. Eng.
,
184
, p.
116290
.
25.
Xu
,
H. J.
,
Xing
,
Z. B.
,
Wang
,
F. Q.
, and
Cheng
,
Z. M.
,
2019
, “
Review on Heat Conduction, Heat Convection, Thermal Radiation and Phase Change Heat Transfer of Nanofluids in Porous Media: Fundamentals and Applications
,”
Chem. Eng. Sci.
,
195
, pp.
462
483
.
26.
Ghosh
,
D.
,
Guha
,
C.
, and
Ghose
,
J.
,
2023
, “Numerical Investigation on the Effect of the Shape of Cavities on the Melting Process of Latent Heat Thermal Storage Material Paraffin Wax,”
Sustainable Chemical, Mineral and Material Processing
,
E.
Chinthapudi
,
S.
Basu
, and
B. N.
Thorat
, eds.,
Springer Nature Singapore
,
Singapore
, pp.
29
44
.
27.
Jourabian
,
M.
,
Farhadi
,
M.
, and
Rabienataj Darzi
,
A. A.
,
2016
, “
Heat Transfer Enhancement of PCM Melting in 2D Horizontal Elliptical Tube Using Metallic Porous Matrix
,”
Theor. Comput. Fluid Dyn.
,
30
(
6
), pp.
579
603
.
28.
Fallah Najafabadi
,
M.
,
Talebi Rostami
,
H.
, and
Farhadi
,
M.
,
2021
, “
Analysis of a Twisted Double-Pipe Heat Exchanger With Lobed Cross-Section as a Novel Heat Storage Unit for Solar Collectors Using Phase-Change Material
,”
Int. Commun. Heat Mass Transf.
,
128
, p.
105598
.
29.
Ouzzane
,
M.
, and
Bady
,
M.
,
2022
, “
Investigation of an Innovative Canadian Well System Combined With a Frozen Water/PCM Heat Exchanger for Air-Cooling in Hot Climate
,”
Appl. Therm. Eng.
,
213
, p.
118737
.
30.
Shinde
,
T. U.
,
Dalvi
,
V. H.
,
Mathpati
,
C. S.
,
Shenoy
,
N.
,
Panse
,
S. V.
, and
Joshi
,
J. B.
,
2022
, “
Heat Transfer Investigation of PCM Pipe Bank Thermal Storage for Space Heating Application
,”
Chem. Eng. Process.—Process Intensif.
,
180
, p.
108791
.
31.
Kadivar
,
M. R.
,
Moghimi
,
M. A.
,
Sapin
,
P.
, and
Markides
,
C. N.
,
2019
, “
Annulus Eccentricity Optimisation of a Phase-Change Material (PCM) Horizontal Double-Pipe Thermal Energy Store
,”
J. Energy Storage
,
26
, p.
101030
.
32.
Li
,
H.
,
Wang
,
Y.
,
Han
,
Y.
,
Li
,
W.
,
Yang
,
L.
,
Guo
,
J.
,
Liu
,
Y.
,
Zhang
,
J.
,
Zhang
,
M.
, and
Jiang
,
F.
,
2022
, “
A Comprehensive Review of Heat Transfer Enhancement and Flow Characteristics in the Concentric Pipe Heat Exchanger
,”
Powder Technol.
,
397
, p.
117037
.
33.
Alaraji
,
A.
,
Alhussein
,
H.
,
Asadi
,
Z.
, and
Ganji
,
D. D.
,
2021
, “
Investigation of Heat Energy Storage of RT26 Organic Materials in Circular and Elliptical Heat Exchangers in Melting and Solidification Process
,”
Case Stud. Therm. Eng.
,
28
, p.
101432
.
34.
Soltani
,
H.
,
Soltani
,
M.
,
Karimi
,
H.
, and
Nathwani
,
J.
,
2021
, “
Heat Transfer Enhancement in Latent Heat Thermal Energy Storage Unit Using a Combination of Fins and Rotational Mechanisms
,”
Int. J. Heat Mass Transf.
,
179
, p.
121667
.
35.
Gholaminia
,
V.
,
Rahimi
,
M.
, and
Ghaebi
,
H.
,
2020
, “
Heat Storage Process Analysis in a Heat Exchanger Containing Phase Change Materials
,”
J. Energy Storage
,
32
, p.
101875
.
36.
Shahsavar
,
A.
,
Ali
,
H. M.
,
Mahani
,
R. B.
, and
Talebizadehsardari
,
P.
,
2020
, “
Numerical Study of Melting and Solidification in a Wavy Double-Pipe Latent Heat Thermal Energy Storage System
,”
J. Therm. Anal. Calorim.
,
141
(
5
), pp.
1785
1799
.
37.
Moon
,
H.
,
Miljkovic
,
N.
, and
King
,
W. P.
,
2020
, “
High Power Density Thermal Energy Storage Using Additively Manufactured Heat Exchangers and Phase Change Material
,”
Int. J. Heat Mass Transf.
,
153
, p.
119591
.
38.
Kumari
,
P.
, and
Ghosh
,
D.
,
2023
, “
A Comparative Numerical Analysis of Concentric and Hairpin Heat Exchanger for Efficient Energy Storage Using Phase-Change Material
,”
J. Therm. Anal. Calorim.
,
148
(
21
), pp.
12211
12224
.
39.
Gorzin
,
M.
,
Hosseini
,
M. J.
,
Rahimi
,
M.
, and
Bahrampoury
,
R.
,
2019
, “
Nano-Enhancement of Phase Change Material in a Shell and Multi-PCM-Tube Heat Exchanger
,”
J. Energy Storage
,
22
, pp.
88
97
.
40.
Ghosh
,
D.
,
Kumar
,
P.
,
Sharma
,
S.
,
Guha
,
C.
, and
Ghose
,
J.
,
2021
, “
Numerical Investigation on Latent Heat Thermal Energy Storage in a Phase Change Material Using a Heat Exchanger
,”
Heat Transf.
,
50
(
5
), pp.
4289
4308
.
41.
Ghosh
,
D.
,
Guha
,
C.
, and
Ghose
,
J.
,
2019
, “
Numerical Investigation of Paraffin Wax Solidification in Spherical and Rectangular Cavity
,”
Heat Mass Transf.
,
55
(
12
), pp.
3547
3559
.
42.
Rahimi
,
M.
,
Ranjbar
,
A. A.
,
Ganji
,
D. D.
,
Sedighi
,
K.
,
Hosseini
,
M. J.
, and
Bahrampoury
,
R.
,
2014
, “
Analysis of Geometrical and Operational Parameters of PCM in a Fin and Tube Heat Exchanger
,”
Int. Commun. Heat Mass Transf.
,
53
, pp.
109
115
.
43.
Gorzin
,
M.
,
Hosseini
,
M. J.
,
Ranjbar
,
A. A.
, and
Bahrampoury
,
R.
,
2018
, “
Investigation of PCM Charging for the Energy Saving of Domestic Hot Water System
,”
Appl. Therm. Eng.
,
137
, pp.
659
668
.
44.
Peng
,
B.
,
Qiu
,
M.
,
Xu
,
N.
,
Zhou
,
Y.
,
Sheng
,
W.
, and
Su
,
F.
,
2023
, “
Optimum Orthogonally Structured Fins in Charging Enhancement of Phase Change Materials (PCMs): PCMs' Thermophysical Properties Effects
,”
Int. J. Therm. Sci.
,
184
, p.
108005
.
45.
Ghosh
,
D.
, and
Guha
,
C.
,
2020
, “
Numerical Simulation of Paraffin Wax Melting in a Rectangular Cavity Using CFD
,”
Indian Chem. Eng.
,
62
(
3
), pp.
314
328
.
46.
Ebadi
,
S.
,
Al-Jethelah
,
M.
,
Tasnim
,
S. H.
, and
Mahmud
,
S.
,
2018
, “
An Investigation of the Melting Process of RT-35 Filled Circular Thermal Energy Storage System
,”
Open Phys.
,
16
(
1
), pp.
574
580
.
You do not currently have access to this content.