Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Alternative cooling systems that can be used for thermal management in different technological applications such as in batteries, solar panels, electronic systems, and in diverse heat transfer equipments are needed. This study uses a hybrid channel system with rotating circular cylinders to explore the cooling of two heated elastic plates. The numerical analysis of a coupled fluid–structure–thermal system with rotating cylinders is done using the finite element technique with arbitrary Lagrangian–Eulerian (ALE). The study is carried out for different values of the Reynolds number (Re) in the upper channel flow (between 200 and 1000), the nondimensional rotational speeds of the cylinders (Ω in the range between −1000 and 1000), and the nondimensional location of the cylinders (between 0.4 and 1) taking into account the cooling of both the rigid and elastic plates. Rigid plates have better cooling performance than elastic ones. The cooling performance increases for both rigid and elastic plates, up to 26.1% and 31.7%, respectively, at the maximum upper channel flow Re. For elastic and rigid plates, counter-clockwise (CCW) rotation at maximum speed increases cooling performance by 18.5% and 19%, respectively, but clockwise (CW) rotation increments cooling performance by only 7%. The rigid plate’s cooling performance increases by 23.6% when rotation is activated at its maximum speed as opposed to a cooling system without cylinders. Thermal performance varies between 26% and 29% when the cylinder is positioned horizontally differently. By using optimization, the cooling performance increase with rotating cylinders at Re = 200, which is determined to be 73.6% more than that of the case without cylinders. Optimization results in an extra 11.2% increase in cooling performance at Re = 1000 when compared to the parametric computational fluid dynamics (CFD) scenario.

References

1.
Lin
,
J.
,
Liu
,
X.
,
Li
,
S.
,
Zhang
,
C.
, and
Yang
,
S.
,
2021
, “
A Review on Recent Progress, Challenges and Perspective of Battery Thermal Management System
,”
Int. J. Heat Mass Transfer
,
167
, p.
120834
.
2.
Elavarasan
,
R. M.
,
Mudgal
,
V.
,
Selvamanohar
,
L.
,
Wang
,
K.
,
Huang
,
G.
,
Shafiullah
,
G.
,
Markides
,
C. N.
,
Reddy
,
K.
, and
Nadarajah
,
M.
,
2022
, “
Pathways Toward High-Efficiency Solar Photovoltaic Thermal Management for Electrical, Thermal and Combined Generation Applications: A Critical Review
,”
Energy Convers. Manage.
,
255
, p.
115278
.
3.
Shahsavar
,
A.
,
Jafari
,
M.
,
Yıldız
,
Ç.
,
Moradvandi
,
M.
, and
Arıcı
,
M.
,
2023
, “
On the Cooling Performance and Entropy Generation Characteristics of a Heat Sink Under Ultrasonic Vibration: Exploring the Impact of Porous Medium
,”
Int. J. Heat Mass Transfer
,
215
, p.
124500
.
4.
Zhang
,
Z.
,
Wang
,
X.
, and
Yan
,
Y.
,
2021
, “
A Review of the State-of-the-Art in Electronic Cooling
,”
e-Prime-Advances Electrical Eng. Electron. Energy
,
1
, p.
100009
.
5.
Zhang
,
C.
,
Wang
,
N.
,
Xu
,
H.
,
Fang
,
Y.
,
Yang
,
Q.
, and
Talkhoncheh
,
F. K.
,
2023
, “
Thermal Management Optimization of the Photovoltaic Cell by the Phase Change Material Combined With Metal Fins
,”
Energy
,
263
, p.
125669
.
6.
Peng
,
H.
,
Du
,
Y.
,
Hu
,
F.
,
Tian
,
Z.
, and
Shen
,
Y.
,
2023
, “
Thermal Management of High Concentrator Photovoltaic System Using a Novel Double-Layer Tree-Shaped Fractal Microchannel Heat Sink
,”
Renew. Energy
,
204
, pp.
77
93
.
7.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2023
, “
Comparative Study on Different Cooling Techniques for Photovoltaic Thermal Management: Hollow Fins, Wavy Channel and Insertion of Porous Object With Hybrid Nanofluids
,”
Appl. Therm. Eng.
,
228
, p.
120458
.
8.
Sheikholeslami
,
M.
, and
Khalili
,
Z.
,
2024
, “
Environmental and Energy Analysis for Photovoltaic-Thermoelectric Solar Unit in Existence of Nanofluid Cooling Reporting Co2 Emission Reduction
,”
J. Taiwan Inst. Chem. Eng.
,
156
, p.
105341
.
9.
Costa
,
V.
, and
Raimundo
,
A.
,
2010
, “
Steady Mixed Convection in a Differentially Heated Square Enclosure With an Active Rotating Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
1208
1219
.
10.
Sedaghat
,
M.
,
Jahangiri
,
A.
,
Ameri
,
M.
, and
Chamkha
,
A. J.
,
2023
, “
Analysis of the Effect of Hot Rotation Cylinders on the Enhancement of Heat Transfer in Underfloor Heating Enclosures Based on Numerical and Experimental Results
,”
Int. J. Therm. Sci.
,
188
, p.
108218
.
11.
Jiang
,
X.
,
Hatami
,
M.
,
Abderrahmane
,
A.
,
Younis
,
O.
,
Makhdoum
,
B. M.
, and
Guedri
,
K.
,
2023
, “
Mixed Convection Heat Transfer and Entropy Generation of MHD Hybrid Nanofluid in a Cubic Porous Cavity With Wavy Wall and Rotating Cylinders
,”
Appl. Therm. Eng.
,
226
, p.
120302
.
12.
Qasem
,
N. A.
,
Abderrahmane
,
A.
,
Ahmed
,
S.
,
Younis
,
O.
,
Guedri
,
K.
,
Said
,
Z.
, and
Mourad
,
A.
,
2022
, “
Effect of a Rotating Cylinder on Convective Flow, Heat and Entropy Production of a 3D Wavy Enclosure Filled by a Phase Change Material
,”
Appl. Therm. Eng.
,
214
, p.
118818
.
13.
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2018
, “
Analysis and Predictive Modeling of Nanofluid-Jet Impingement Cooling of an Isothermal Surface Under the Influence of a Rotating Cylinder
,”
Int. J. Heat Mass Transfer
,
121
, pp.
233
245
.
14.
Tahmasbi
,
M.
,
Siavashi
,
M.
,
Abbasi
,
H. R.
, and
Akhlaghi
,
M.
,
2020
, “
Mixed Convection Enhancement by Using Optimized Porous Media and Nanofluid in a Cavity With Two Rotating Cylinders
,”
J. Therm. Anal. Calorim.
,
141
, pp.
1829
1846
.
15.
Bozorg
,
M. V.
, and
Siavashi
,
M.
,
2019
, “
Two-Phase Mixed Convection Heat Transfer and Entropy Generation Analysis of a Non-Newtonian Nanofluid Inside a Cavity With Internal Rotating Heater and Cooler
,”
Int. J. Mech. Sci.
,
151
, pp.
842
857
.
16.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2023
, “
Thermal and Phase Change Process in a Branching T-channel Under Active Magnetic Field and Two Rotating Inner Cylinders: Analysis and Predictions by Radial Basis Neural Networks
,”
Int. J. Heat Mass Transfer
,
217
, p.
124548
.
17.
Khanafer
,
K.
,
Aithal
,
S.
, and
Vafai
,
K.
,
2019
, “
Mixed Convection Heat Transfer in a Differentially Heated Cavity With Two Rotating Cylinders
,”
Int. J. Therm. Sci.
,
135
, pp.
117
132
.
18.
Garmroodi
,
M. D.
,
Ahmadpour
,
A.
, and
Talati
,
F.
,
2019
, “
Mhd Mixed Convection of Nanofluids in the Presence of Multiple Rotating Cylinders in Different Configurations: A Two-Phase Numerical Study
,”
Int. J. Mech. Sci.
,
150
, pp.
247
264
.
19.
Al-Amiri
,
A.
, and
Khanafer
,
K.
,
2011
, “
Fluid–structure Interaction Analysis of Mixed Convection Heat Transfer in a Lid-Driven Cavity With a Flexible Bottom Wall
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3826
3836
.
20.
Ismael
,
M. A.
,
Hussain
,
S.
,
Alsabery
,
A. I.
,
Chamkha
,
A. J.
, and
Hashim
,
I.
,
2022
, “
Thermal Performance of a Vertical Double-Passage Channel Separated by a Flexible Thin Sheet
,”
Int. Commun. Heat Mass Transfer
,
137
, p.
106238
.
21.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2018
, “
Cooling of a Partially Elastic Isothermal Surface by Nanofluids Jet Impingement
,”
ASME J. Heat Transfer
,
140
(
4
), p.
042205
.
22.
Yaseen
,
D. T.
,
Salih
,
S. M.
, and
Ismael
,
M. A.
,
2023
, “
Effect of the Lid-Driven on Mixed Convection in an Open Flexible Wall Cavity With a Partially Heated Bottom Wall
,”
Int. J. Therm. Sci.
,
188
, p.
108213
.
23.
Khanafer
,
K.
, and
Vafai
,
K.
,
2020
, “
Effect of a Circular Cylinder and Flexible Wall on Natural Convective Heat Transfer Characteristics in a Cavity Filled With a Porous Medium
,”
Appl. Therm. Eng.
,
181
, p.
115989
.
24.
Ghalambaz
,
M.
,
Jamesahar
,
E.
,
Ismael
,
M. A.
, and
Chamkha
,
A. J.
,
2017
, “
Fluid-Structure Interaction Study of Natural Convection Heat Transfer Over a Flexible Oscillating Fin in a Square Cavity
,”
Int. J. Therm. Sci.
,
111
, pp.
256
273
.
25.
Sabbar
,
W. A.
,
Ismael
,
M. A.
, and
Almudhaffar
,
M.
,
2018
, “
Fluid-Structure Interaction of Mixed Convection in a Cavity-Channel Assembly of Flexible Wall
,”
Int. J. Mech. Sci.
,
149
, pp.
73
83
.
26.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2019
, “
Forced Convection in a Branching Channel With Partly Elastic Walls and Inner L-Shaped Conductive Obstacle Under the Influence of Magnetic Field
,”
Int. J. Heat Mass Transfer
,
144
, p.
118598
.
27.
Lewis
,
R. W.
,
Nithiarasu
,
P.
, and
Seetharamu
,
K. N.
,
2004
,
Fundamentals of the Finite Element Method for Heat and Fluid Flow
,
John Wiley & Sons
, West Sussex, UK.
28.
Reddy
,
J. N.
,
2015
,
An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics
,
Oxford University Press
, Boca Raton, FL.
29.
Mehryan
,
S.
,
Ghalambaz
,
M.
,
Feeoj
,
R. K.
,
Hajjar
,
A.
, and
Izadi
,
M.
,
2020
, “
Free Convection in a Trapezoidal Enclosure Divided by a Flexible Partition
,”
Int. J. Heat Mass Transfer
,
149
, p.
119186
.
30.
Alsabery
,
A.
,
Selimefendigil
,
F.
,
Hashim
,
I.
,
Chamkha
,
A.
, and
Ghalambaz
,
M.
,
2019
, “
Fluid-Structure Interaction Analysis of Entropy Generation and Mixed Convection Inside a Cavity With Flexible Right Wall and Heated Rotating Cylinder
,”
Int. J. Heat Mass Transfer
,
140
, pp.
331
345
.
31.
Comsol
,
2018
, “Comsol User’s Guide,” COMSOL AB: Stockholm.
32.
Silva
,
S. R.
,
Gomes
,
R.
, and
Falcao
,
A.
,
2016
, “
Hydrodynamic Optimization of the UGEN: Wave Energy Converter With U-Shaped Interior Oscillating Water Column
,”
Int. J. Mar. Energy
,
15
, pp.
112
126
.
33.
Powell
,
M. J.
,
1994
,
A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation
,
Springer
, Dordrecht, The Netherlands.
34.
Raisi
,
A.
, and
Arvin
,
I.
,
2018
, “
A Numerical Study of the Effect of Fluid-Structure Interaction on Transient Natural Convection in an Air-Filled Square Cavity
,”
Int. J. Therm. Sci.
,
128
, pp.
1
14
.
You do not currently have access to this content.