Abstract

The present experimental-cum-numerical work reports three different types of transitions (Type I, Type II, and Type III) observed in the flame topology of non-premixed methane/air and biogas/air coflow flames as the co-annular air Reynolds number (Rea) is varied from zero to maximum limit or till flame blows off/blows out for a given range of fuel Reynolds number (Ref). Type I transition represents the transformation from burner lip-attached flame to lifted flame and then backward propagation towards the burner exit plane as Rea is increased. In Type II transition, the burner lip-attached flame lifts off from the burner exit, stabilizes at a new location, and then extinguishes as Rea is increased. In Type III transition, the burner lip-attached flame directly extinguishes as Rea is increased. RANS-Based 3D numerical simulations are performed to simulate these three types of transitions (Type I, Type II, and Type III) using GRI 2.11 detailed reaction mechanism. Flow turbulence is modeled by employing the standard k−ɛ turbulent model. Flamelet-Generated Manifold (FGM) approach is used as the turbulent-combustion model. To validate the numerical method/models, the numerical temperature profiles have been compared against the experimental temperature measurements as a part of the present work. The numerical results are employed to gain further insights to understand flame–flow interactions.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Xie
,
F.
,
Zhou
,
Y.
,
Song
,
X.
,
Bai
,
Y.
,
Wu
,
R.
,
Yao
,
M.
, and
Yu
,
G.
,
2021
, “
Investigation of OH* Chemiluminescence With Lift-Off Characteristic in Methane-Oxygen Inverse Diffusion Flame
,”
Int. J. Hydrogen Energy
,
46
(
2
), pp.
1461
1472
.
2.
Leung
,
T.
, and
Wierzba
,
I.
,
2007
, “
Stability Limits of Biogas Jet Diffusion Flames
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
,
Seattle, WA
,
Nov. 11–15
, pp.
65
73
.
3.
Feikema
,
D.
,
Chen
,
R. H.
, and
Driscoll
,
J. F.
,
1991
, “
Blowout of Nonpremixed Flames: Maximum Coaxial Air Velocities Achievable, With and Without Swirl
,”
Combust. Flame
,
86
(
4
), pp.
347
358
.
4.
Wilson
,
D. A.
, and
Lyons
,
K. M.
,
2008
, “
Effects of Dilution and Coflow on the Stability of Lifted Non-Premixed Biogas-Like Flames
,”
Fuel
,
87
(
3
), pp.
405
413
.
5.
Khaleghi
,
M.
,
Hosseini
,
S. E.
, and
Wahid
,
M. A.
,
2015
, “
Experimental and Numerical Investigations of Biogas Vortex Combustion
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
229
(
6
), pp.
662
676
.
6.
Fischer
,
M.
, and
Jiang
,
X.
,
2017
, “
Numerical Studies of CO Formation During Biogas Combustion
,”
Energy Procedia
,
142
, pp.
426
431
.
7.
Abdulnaim
,
A.
,
Elkholy
,
A.
,
Elmously
,
M.
,
Moneib
,
H.
,
Roberts
,
W. L.
, and
Elbaz
,
A. M.
,
2023
, “
On the Stability and Characteristics of Biogas/Methane/Air Flames Fired by a Double Swirl Burner
,”
Flow Turbul. Combust.
,
112
(
3
), pp.
751
767
.
8.
Harish
,
A.
, and
Raghavan
,
V.
,
2022
, “
Numerical Study of Laminar Non-Premixed Biogas-Air Flames Behind Backward Facing Steps
,”
Arch. Mech. Eng.
,
69
(
2
), pp.
221
244
.
9.
Kenfack
,
L. S.
,
Chelem
,
M. C.
,
Pountounynyi
,
P.
,
Obounou Akong Marcel
,
B.
, and
Zekeng Serge
,
Z.
,
2023
, “
Numerical Simulation of Biogas Combustion by Using a Finite Volume Based-Multispecies Transport Model
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
022304
.
10.
Mordaunt
,
C. J.
, and
Pierce
,
W. C.
,
2014
, “
Design and Preliminary Results of an Atmospheric-Pressure Model Gas Turbine Combustor Utilizing Varying CO2 Doping Concentration in CH 4 to Emulate Biogas Combustion
,”
Fuel
,
124
, pp.
258
268
.
11.
Hoda
,
A.
,
Rahman
,
T. M. R.
,
Asrar
,
W.
, and
Khan
,
S. A.
,
2022
, “
A Comparative Study of Natural Gas and Biogas Combustion in a Swirling Flow Gas Turbine Combustor
,”
Combust. Sci. Technol.
,
194
(
13
), pp.
2613
2640
.
12.
Kalghatgi
,
G. T.
,
1981
, “
Blow-Out Stability of Gaseous Jet Diffusion Flames. Part I In Still Air
,”
Combust. Sci. Technol.
,
26
(
5–6
), pp.
233
239
.
13.
Broadwell
,
J. E.
,
Dahm
,
W. J. A.
, and
Mungal
,
M. G.
,
1984
, “
Blowout of Turbulent Jet Diffusion Flames
,”
Proceedings of the Twentieth Symposium (International) on Combustion/the Combustion Institute
,
Ann Arbor, MI
,
Aug. 12–17
, pp.
303
310
.
14.
Nair
,
S.
,
2006
, “
Acoustic Characterization of Flame Blowout Phenomenon
,” Ph.D. thesis, George Institute of Technology, Atlanta, GA.
15.
Santhosh
,
R.
, and
Basu
,
S.
,
2016
, “
Transitions and Blowoff of Unconfined Non-Premixed Swirling Flame
,”
Combust. Flame
,
164
, pp.
35
52
.
16.
Vanquickenborne
,
L.
, and
Van Tiggelen
,
A.
,
1966
, “
The Stabilization Mechanism of Lifted Diffusion Flames
,”
Combust. Flame
,
10
(
1
), pp.
59
69
.
17.
Leung
,
T.
, and
Wierzba
,
I.
,
2008
, “
The Effect of Hydrogen Addition on Biogas Non-Premixed Jet Flame Stability in a Coflowing Air Stream
,”
Int. J. Hydrogen Energy
,
33
(
14
), pp.
3856
3862
.
18.
Dahm
,
W. J. A.
, and
Dibble
,
R. W.
,
1988
, “
Coflowing Turbulent Jet Diffusion Flame Blowout
,”
Proceedings of the Twenty Second Symposium On Combustion/the Combustion Institute
, Vol.
22
, pp.
801
808
.
19.
Peter's
,
N.
, and
Donnerhack
,
S.
,
1981
, “
Structure and Similarity of Nitric Oxide Production in Turbulent Diffusion Flames
,”
Proceedings of the Eighteenth Symposium on Combustion
,
Canada
,
Aug. 17–22
.
20.
Moore
,
N. J.
,
McCraw
,
J. L.
, and
Lyons
,
K. M.
,
2008
, “
Observations on Jet-Flame Blowout
,”
Int. J. React. Syst.
,
2008
, pp.
1
7
.
21.
Takahashi
,
F.
,
Mizomoto
,
M.
,
Ikai
,
S.
, and
Tsuruyama
,
K.
,
1990
, “
Stability Limits of Hydrogen/Air Coflow Jet Diffusion Flames
,”
Proceedings of the 28th Aerospace Sciences Meeting
,
Reno, NV
,
Jan. 8–11
, p.
34
.
22.
Dahm
,
W. J. A.
, and
Mayman
,
A. G.
,
1990
, “
Blowout Limits of Turbulent Jet Diffusion Flames for Arbitrary Source Conditions
,”
AIAA J.
,
28
(
7
), pp.
1157
1162
.
23.
Seaba
,
J. P.
,
Chen
,
L.-D.
, and
Roquemore
,
W. M.
,
1993
, “
Liftoff Characteristics of Methane Jet Diffusion Flames
,”
J. Propul. Power
,
9
(
4
), pp.
654
656
.
24.
Juric
,
F.
,
Stipic
,
M.
,
Samec
,
N.
,
Hribersek
,
M.
,
Honus
,
S.
, and
Vujanovic
,
M.
,
2021
, “
Numerical Investigation of Multiphase Reactive Processes Using Flamelet Generated Manifold Approach and Extended Coherent Flame Combustion Model
,”
Energy Convers. Manage.
,
240
, p.
114261
.
25.
Benim
,
A. C.
, and
Pfeiffelmann
,
B.
,
2019
, “
Comparison of Combustion Models for Lifted Hydrogen Flames Within RANS Framework
,”
Energies
,
13
(
1
), pp.
152
.
26.
Rida
,
S.
,
Chakravorty
,
S.
,
Basani
,
J.
,
Orsino
,
S.
, and
Ansari
,
N.
,
2015
, “
An Assessment of Flamelet Generated Manifold Combustion Model for Predicting Combustor Performance
,”
Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition GT2015
,
Montreal, Canada
,
June 15–19
.
27.
Sarras
,
G.
,
Mahmoudi
,
Y.
,
Mendez
,
L. A.
,
Van Veen
,
E.
, and
Tummersm
,
M. J.
, and
Roekaerts
,
D. J. E. M.
,
2014
, “
Modelling of Turbuelnt Natural Gas and Biogas Flames of the Delft Jet in How Coflow Burner; Effects of Coflow Temperature, Fuel Temperature, and Fuel Composition on the Flame Lift Off Height
,”
Flow Turbul. Combust.
,
93
(
4
), pp.
607
635
.
28.
Brassard
,
D.
, and
Ferchichi
,
M.
,
2005
, “
Transformation of a Polynomial for a Contraction Wall Profile
,”
ASME J. Fluids Eng.
,
127
(
1
), pp.
183
185
.
29.
Mehta
,
R. D.
, and
Bradshaw
,
P.
,
1979
, “
Technical Notes of Design for Small Low Speed Wind Tunnels
,”
Aeronaut. J.
,
83
(
827
), pp.
443
453
.
30.
Bell
,
J. H.
, and
Mehta
,
R. D.
,
1988
, “
Contraction Design for Small Low-Speed Wind Tunnels
,” Joint Institute for Aeronautics and Acoustics, Stanford, CA, Report No. NASA Contractor Report; Report No. NASA CR-182747.
31.
Ji
,
L.
,
Wang
,
J.
,
Zhang
,
W.
,
Mao
,
R.
,
Hu
,
G.
, and
Huang
,
Z.
,
2022
, “
Effect of Confinement Ratio on Flame Structure and Blow-Off Characteristics of Swirl Flames
,”
Exp. Therm. Fluid. Sci.
,
135
, p.
110630
.
32.
Khalil
,
A. E. E.
,
Brooks
,
J. M.
, and
Gupta
,
A. K.
,
2016
, “
Impact of Confinement on Flowfield of Swirl Flow Burners
,”
Fuel
,
184
, pp.
1
9
.
33.
Shim
,
M.
,
Noh
,
K.
, and
Yoon
,
W.
,
2018
, “
Flame Structure of Methane/Oxygen Shear Coaxial Jet With Velocity Ratio Using High-Speed Imaging and OH* CH* Chemiluminescence
,”
Acta Astronaut.
,
147
, pp.
127
132
.
34.
Lee
,
J.
,
Won
,
S. H.
,
Jin
,
S. H.
, and
Chung
,
S. H.
,
2003
, “
Lifted Flames in Laminar Jets of Propane in Coflow Air
,”
Combust. Flame
,
135
(
4
), pp.
449
462
.
35.
Smooke
,
M. D.
,
McEnally
,
C. S.
,
Pfefferle
,
L. D.
,
Hall
,
R. J.
, and
Colket
,
M. B.
,
1999
, “
Computational and Experimental Study of Soot Formation in a Coflow, Laminar Diffusion Flame
,”
Combust. Flame
,
117
(
1–2
), pp.
117
139
.
36.
Luo
,
M.
,
1997
, “
Effects of Radiation on Temperature Measurement in a Fire Environment
,”
J. Fire Sci.
,
15
(
6
), pp.
443
460
.
37.
Blevins
,
L. G.
, and
Pitts
,
W. M.
,
1999
, “
Modeling of Bare and Aspirated Thermocouples in Compartment Fires
,”
Fire Saf. J.
,
33
(
4
), pp.
239
259
.
38.
Silvani
,
X.
, and
Morandini
,
F.
,
2009
, “
Fire Spread Experiments in the Field: Temperature and Heat Fluxes Measurements
,”
Fire Saf. J.
,
44
(
2
), pp.
279
285
.
39.
Hurley
,
M. J.
,
SFPE Handbook of Fire Protection Engineering
,
Springer
,
USA
.
40.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D.
,
2011
,
Fundamentals of Heat and Mass Transfer
, Seventh ed.,
John Wiley & Sons
,
Hoboken, NJ
.
41.
Sislian
,
J. P.
,
Jiang
,
L. Y.
, and
Cusworth
,
R. A.
,
1988
, “
Laser Doppler Velocimetry Investigation of the Turbulence Structure of Axisymmetric Diffusion Flames
,”
Prog. Energy Combust. Sci.
,
14
(
2
), pp.
99
146
.
42.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
43.
Roache
,
P. J.
,
Ghia
,
K. N.
, and
White
,
F. M.
,
1986
, “
Editorial Policy Statement on the Control of Numerical Accuracy
,”
ASME J. Fluids Eng
,
108
(
1
), p.
2
.
44.
Larbi
,
A. A.
,
Bounif
,
A.
,
Senouci
,
M.
,
Gökalp
,
I.
, and
Bouzit
,
M.
,
2018
, “
RANS Modelling of a Lifted Hydrogen Flame Using Eulerian/Lagrangian Approaches With Transported PDF Method
,”
Energy
,
164
, pp.
1242
1256
.
45.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Meth. Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
46.
Escue
,
A.
, and
Cui
,
J.
,
2010
, “
Comparison of Turbulence Models in Simulating Swirling Pipe Flows
,”
Appl. Math. Model.
,
34
(
10
), pp.
2840
2849
.
47.
Lien
,
F. S.
, and
Leschziner
,
M. A.
,
1994
, “
Assessment of Turbulence-Transport Models Including Non-Linear RNG Eddy-Viscosity Formulation and Second-Moment Closure for Flow Over a Backward-Facing Step
,”
Comput. Fluids
,
23
(
8
), pp.
983
1004
.
48.
Jawarneh
,
A. M.
, and
Vatistas
,
G. H.
,
2006
, “
Reynolds Stress Model in the Prediction of Confined Turbulent Swirling Flows
,”
J. Fluid. Eng.
,
128
(
6
), pp.
1377
1382
.
49.
Ansys Therory Guide; Release 18.0.
50.
Zhang
,
Z.
,
Liu
,
X.
,
Gong
,
Y.
,
Li
,
Z.
,
Yang
,
J.
, and
Zheng
,
H.
,
2020
, “
Investigation on Flame Characteristics of Industrial Gas Turbine Combustor with Different Mixing Uniformities
,”
Fuel
,
259
, p.
116297
.
51.
Malalasekera
,
W.
, and
Versteeg
,
H. K.
,
1995
,
Introduction to Computational Fluid Dynamics
,
Pearson Education Limited
,
England
.
52.
Nemitallah
,
M. A.
,
Mansir
,
I. B.
,
Haque
,
M. A.
,
Abdelhafez
,
A.
, and
Habib
,
M. A.
,
2023
, “
Effects of Adiabatic Flame Temperature on Premixed Combustion Stability and Emission Characteristics of Swirl-Stabilized Oxy-Methane Flames
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
022302
.
53.
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Davidson
,
D. F.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V.
,
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
, and
Goldenberg
,
M.
, “GRI 2.11,” http://combustion.berkeley.edu/gri-mech/.
54.
Jeon
,
D. S.
,
Hwang
,
G. J.
,
Jang
,
H. J.
, and
Kim
,
N. I.
,
2022
, “
Lift-off Characteristics of Non-Premixed Jet Flames in Laminar/Turbulent Transition
,”
Combust. Flame
,
238
, p.
111948
.
55.
Habib
,
M. A.
, and
Whitelaw
,
J. H.
,
1979
, “
Velocity Characteristics of a Confined Coaxial Jet
,”
Am. Soc. Mech. Eng.
,
101
(
4
), pp.
521
529
.
56.
Syred
,
N.
, and
Dahman
,
D. R.
,
1978
, “
Effect of High Levels of Confinement Upon the Aerodynamics of Swirl Burners
,”
J. Energy
,
2
(
1
), pp.
8
15
.
57.
Feikema
,
D.
,
Chen
,
R. H.
, and
Driscoll
,
J. F.
,
1990
, “
Enhancement of Flame Blowout Limits by the Use of Swirl
,”
Combust. Flame
,
80
(
2
), pp.
183
195
.
58.
Charest
,
M. R. J.
,
Gulder
,
O. L.
, and
Clinton
,
P. T. G.
,
2014
, “
Numerical and Experimental Study of Soot Formation in Laminar Diffusion Flames Burning Simulated Biogas Fuels at Elevated Pressures
,”
Combust. Flame
,
161
(
10
), pp.
2678
2691
.
59.
Barnwal
,
A.
,
Barua
,
A.
,
Charest
,
M. R.
,
Gulder
,
O. L.
, and
Groth
,
C. P.
,
2011
, “
Structure and Sooting Propensity of Biogas and Syngas Fuel Co-Flow Laminar Diffusion Flames at Elevated Pressure
,” Proceeding of Combustion Institute-Canadian Section, Spring Technical Meeting, pp.
152
157
.
60.
Unni
,
V. R.
,
Chaudhuri
,
S.
, and
Sujith
,
R. I.
,
2018
, “
Flame Blowout: Transition to an Absorbing Phase
,”
Chaos
,
28
(
11
), p.
113121
.
61.
Briones
,
A. M.
,
Aggarwal
,
S. K.
, and
Katta
,
V. R.
,
2006
, “
A Numerical Investigation of Flame Liftoff, Stabilization, and Blowout
,”
Phys. Fluids
,
18
(
4
), p.
043603
.
62.
Glassman
,
I.
, and
Yetter
,
A. R.
,
2008
,
Combustion
, 4th ed.,
Elsevier's
,
San Diego, CA
.
63.
Lee
,
C. E.
, and
Hwang
,
C. H.
,
2007
, “
An Experimental Study on the Flame Stability of LFG and LFG-Mixed Fuels
,”
Fuel
,
86
(
5–6
), pp.
649
655
.
64.
Xiang
,
L.
,
Chu
,
H.
,
Ren
,
F.
, and
Gu
,
M.
,
2019
, “
Numerical Analysis of the Effect of CO2 on Combustion Characteristics of Laminar Premixed Methane/Air Flames
,”
J. Energy Inst.
,
92
(
5
), pp.
1487
1501
.
65.
Hinton
,
N.
, and
Stone
,
R.
,
2014
, “
Laminar Burning Velocity Measurements of Methane and Carbon Dioxide Mixtures (Biogas) Over Wide Ranging Temperatures and Pressures
,”
Fuel
,
116
, pp.
743
750
.
You do not currently have access to this content.