Abstract

Cooling of heavy-duty electrical machines such as generators and motors is crucial for the smooth operations without thermal runaway. A commonly employed technique for the cooling of rotors in these machines is to place channels at different radial locations for the continuous passage of coolant. These channels are therefore rotating about a parallel axis, and the rotation-induced forces alter the flow and thermal behavior of the coolant compared to stationary channels. The present study reports a detailed numerical investigation on a long circular channel rotating about a parallel axis. The objective is to analyze the flow, heat transfer, and rotation-induced forces (Coriolis and centrifugal forces) in the entry region as well as in the region where flow is stable (the term ‘stable’ is used rather than ‘developed’ due to the presence of secondary flows in this region). The rotating channel was subjected to constant wall heat flux and constant wall temperature conditions at different Rotation numbers of 0, 0.15, 0.4, and 0.6. The Coriolis force is observed to be strong enough in the entry region to influence the flow. In the “stable flow” region, the centrifugal force becomes more dominant and forms counter-rotating secondary vortex pair, which causes circumferential variation in the Nusselt number. The flow and heat transfer characteristics for constant wall heat flux and wall temperature boundaries are the same for rotation conditions with similar values of rotational Grashof number. A correlation is presented for the circumferential variation of the Nusselt number in the stable flow region.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Kuria
,
J.
, and
Hwang
,
P.
,
2012
, “
Investigation of Thermal Performance of Electric Vehicle BLDC Motor
,”
Int. J. Mech. Eng.
,
1
(
1
), pp.
1
17
.
2.
Nakahama
,
T.
,
Suzuki
,
K.
,
Hashidume
,
S.
,
Ishibashi
,
F.
, and
Hirata
,
M.
,
2006
, “
Cooling Airflow in Unidirectional Ventilated Open-Type Motor for Electric Vehicles
,”
IEEE Trans. Energy Convers.
,
21
(
3
), pp.
645
651
.
3.
Fujita
,
H.
,
Itoh
,
A.
, and
Urano
,
T.
,
2019
, “
Newly Developed Motor Cooling Method Using Refrigerant
,”
World Electric Veh. J.
,
10
(
2
), p.
38
.
4.
Fasquelle
,
A.
,
Le Besnerais
,
J.
,
Harmand
,
S.
,
Hecquet
,
M.
,
Brisset
,
S.
,
Brochet
,
P.
, and
Randria
,
A.
,
2010
, “
Coupled Electromagnetic Acoustic and Thermal-Flow Modeling of an Induction Motor of Railway Traction
,”
Appl. Therm. Eng.
,
30
(
17
), pp.
2788
2795
.
5.
Morris
,
W. D.
,
1965
, “
Laminar Convection in a Heated Vertical Tube Rotating About a Parallel Axis
,”
J. Fluid Mech.
,
21
(
3
), pp.
453
464
.
6.
Morris
,
W. D.
, and
Woods
,
J. L.
,
1978
, “
Heat Transfer in the Entrance Region of Tubes that Rotate About a Parallel Axis
,”
J. Mech. Eng. Sci.
,
20
(
6
), pp.
319
325
.
7.
Morris
,
W. D.
, and
Dias
,
F. M.
,
1980
, “
Turbulent Heat Transfer in a Revolving Square-Sectioned Tube
,”
J. Mech. Eng. Sci.
,
22
(
2
), pp.
95
101
.
8.
Baudoin
,
B.
,
1987
, “
Contribution a l’etude des conditions d’ecoulement dans le circuit de refroidissement d’un moteur electrique de type ouvert
,” Ph.D. thesis,
Université de Poitiers
,
Poitiers, France
.
9.
Humphreys
,
J. F.
,
Morris
,
W. D.
, and
Barrow
,
H.
,
1967
, “
Convection Heat Transfer in the Entry Region of a Tube Which Revolves About an Axis Parallel to Itself
,”
Int. J. Heat Mass Transfer
,
10
(
3
), pp.
333
340
.
10.
Levy
,
E.
,
Neti
,
S.
,
Brown
,
G.
,
Bayat
,
F.
, and
Kadambi
,
V.
,
1986
, “
Laminar Heat Transfer and Pressure Drop in a Rectangular Duct Rotating About a Parallel Axis
,”
ASME J. Heat Transfer
,
108
(
2
), pp.
350
356
.
11.
Majumdar
,
A.
,
Morris
,
W. D.
,
Skiadaressis
,
D.
, and
Spalding
,
D. B.
,
1977
, “
Heat Transfer in Rotating Ducts
,”
Mech. Eng. Bull.
,
8
(
4
), pp.
87
95
.
12.
Gethin
,
D. T.
, and
Johnson
,
A. R.
,
1989
, “
Numerical Analysis of the Developing Fluid Flow in a Circular Duct Rotating Steadily About a Parallel Axis
,”
Int. J. Numer. Methods Fluids
,
9
(
2
), pp.
151
165
.
13.
Neti
,
S.
,
Warnock
,
A. S.
,
Levy
,
E. K.
, and
Kannan
,
K. S.
,
1985
, “
Computation of Laminar Heat Transfer in Rotating Rectangular Ducts
,”
ASME J. Heat Transfer
,
107
(
3
), pp.
575
582
.
14.
Chiu
,
H.-C.
,
Jang
,
J.-H.
, and
Yan
,
W.-M.
,
2007
, “
Combined Mixed Convection and Radiation Heat Transfer in Rectangular Ducts Rotating About a Parallel Axis
,”
Int. J. Heat Mass Transfer
,
50
(
21–22
), pp.
4229
4242
.
15.
Soong
,
C.
, and
Yan
,
W.
,
1999
, “
Development of Secondary Flow and Convective Heat Transfer in Isothermal Iso-flux Rectangular Ducts Rotating About a Parallel Axis
,”
Int. J. Heat Mass Transfer
,
42
(
3
), pp.
497
510
.
16.
Sleiti
,
A. K.
, and
Kapat
,
J. S.
,
2006
, “
Heat Transfer in Channels in Parallel-Mode Rotation at High Rotation Numbers
,”
J. Thermophys. Heat Transfer
,
20
(
4
), pp.
748
753
.
17.
Soong
,
C. Y.
,
2001
, “
Thermal Buoyancy Effects in Rotating Non-isothermal Flows
,”
Int. J. Rotat. Mach.
,
7
(
6
), pp.
435
446
.
18.
Fasquelle
,
A.
,
Pellé
,
J.
,
Harmand
,
S.
, and
Shevchuk
,
I.
,
2014
, “
Numerical Study of Convective Heat Transfer Enhancement in a Pipe Rotating Around a Parallel Axis
,”
ASME J. Heat Transfer
,
136
(
5
), p.
051901
.
19.
Mahadevappa
,
M.
,
Rao
,
V. R.
, and
Sastri
,
V. M. K.
,
1996
, “
Numerical Study of Steady Laminar Fully Developed Fluid Flow and Heat Transfer in Rectangular and Elliptical Ducts Rotating About a Parallel Axis
,”
Int. J. Heat Mass Transfer
,
39
(
4
), pp.
867
875
.
20.
Sarja
,
A.
,
Singh
,
P.
, and
Ekkad
,
S. V.
,
2020
, “
Parallel Rotation for Negating Coriolis Force Effect on Heat Transfer
,”
Aeronaut. J.
,
124
(
1274
), pp.
581
596
.
21.
Hanafizadeh
,
P.
,
Sina Karbalaee
,
M.
,
Attarpour
,
R.
, and
Ashjaee
,
M.
,
2019
, “
A Criterion for the Effect of Parallel Mode Rotation on Non-isothermal Flow Through Square Channel
,”
Int. J. Heat Mass Transfer
,
139
, pp.
343
350
.
22.
Hanafizadeh
,
P.
,
Sina Karbalaee
,
M.
,
Attarpour
,
R.
, and
Ashjaee
,
M.
,
2021
, “
Thermal Analysis on a Criterion for Interaction of Secondary Vortices With Primary Flow Field Under Parallel Mode Rotation
,”
Int. Commun. Heat Mass Transfer
,
121
, p.
105096
.
23.
Lee
,
D.-K.
, and
Ro
,
J.-S.
,
2020
, “
Analysis and Design of a High-Performance Traction Motor for Heavy-Duty Vehicles
,”
Energies
,
13
(
12
), p.
3150
.
24.
Matsson
,
J.
,
2022
,
An Introduction to ANSYS Fluent 2022
,
SDC Publications
,
Mission, KS
.
25.
Escue
,
A.
, and
Cui
,
J.
,
2010
, “
Comparison of Turbulence Models in Simulating Swirling Pipe Flows
,”
Appl. Math. Model.
,
34
(
10
), pp.
2840
2849
.
26.
McEligot
,
D.
,
Coon
,
C.
, and
Perkins
,
H.
,
1970
, “
Relaminarization in Tubes
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
431
433
.
27.
Mikielewicz
,
D. P.
,
Shehata
,
A.
,
Jackson
,
J.
, and
McEligot
,
D. M.
,
2002
, “
Temperature, Velocity and Mean Turbulence Structure in Strongly Heated Internal Gas Flows: Comparison of Numerical Predictions With Data
,”
Int. J. Heat Mass Transfer
,
45
(
21
), pp.
4333
4352
.
You do not currently have access to this content.