Abstract

In the present work, we have studied the performance of vertical plate finned heat sinks that protrude from a vertical base. The difference between the heat sink base temperature and the ambient, i.e., ΔT, has been varied in the range of 10 °C to 60 °C, and the flow undergoes a natural convection regime. To enhance the thermal performance, we have explored different configurations of the heat sink by providing rectangular slots, varying the neck thickness, changing the neck location from the fin base, and providing interruptions along the fin height. The pertinent quantities, i.e., heat dissipation rate, Nusselt number, effectiveness, mass of heat sink, and heat dissipation per unit mass, have been obtained by performing 3D computational simulations. The results obtained are compared to assess the thermal performance of heat sinks. We found that among various designs of heat sinks proposed, the heat sink with two slots, with the location of neck closer to the fin base (xm = 9 mm), and with interrupted fins dissipates maximum heat (12.86% more compared to the commonly used rectangular plate finned heat sink). In addition to the heat transfer improvement, 19.82% mass reduction has also been achieved. Based on the simulation data, we have proposed a correlation for the mean Nusselt number as a function of relevant non-dimensional parameters.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Chou
,
D.
,
2015
, “Infrastructure,”
Practical Guide to Clinical Computing Systems
,
T. H.
Payne
, ed.,
Elsevier
,
New York
, pp.
39
70
.
2.
Baskaya
,
S.
,
Sivrioglu
,
M.
, and
Ozek
,
M.
,
2000
, “
Parametric Study of Natural Convection Heat Transfer From Horizontal Rectangular Fin Arrays
,”
Int. J. Therm. Sci.
,
39
(
8
), pp.
797
805
.
3.
Yazicioǧlu
,
B.
, and
Yüncü
,
H.
,
2007
, “
Optimum Fin Spacing of Rectangular Fins on a Vertical Base in Free Convection Heat Transfer
,”
Heat Mass Transfer
,
44
(
1
), pp.
11
21
.
4.
Elshafei
,
E. A. M.
,
2010
, “
Natural Convection Heat Transfer From a Heat Sink With Hollow/Perforated Circular Pin Fins
,”
Energy
,
35
(
7
), pp.
2870
2877
.
5.
Huang
,
R. T.
,
Sheu
,
W. J.
, and
Wang
,
C. C.
,
2008
, “
Orientation Effect on Natural Convective Performance of Square Pin Fin Heat Sinks
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2368
2376
.
6.
Sertkaya
,
A. A.
,
Ozdemir
,
M.
, and
Canli
,
E.
,
2021
, “
Effects of Pin Fin Height, Spacing and Orientation to Natural Convection Heat Transfer for Inline Pin Fin and Plate Heat Sinks by Experimental Investigation
,”
Int. J. Heat Mass Transfer
,
177
, pp.
1
19
.
7.
Huang
,
C. H.
, and
Wu
,
Y. T.
,
2021
, “
An Optimum Design for a Natural Convection Pin Fin Array With Orientation Consideration
,”
Appl. Therm. Eng.
,
188
, pp.
1
16
.
8.
Mahmoud
,
S.
,
Al-Dadah
,
R.
,
Aspinwall
,
D. K.
,
Soo
,
S. L.
, and
Hemida
,
H.
,
2011
, “
Effect of Micro Fin Geometry on Natural Convection Heat Transfer of Horizontal Microstructures
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
627
633
.
9.
Tari
,
I.
, and
Mehrtash
,
M.
,
2013
, “
Natural Convection Heat Transfer From Horizontal and Slightly Inclined Plate-Fin Heat Sinks
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
728
736
.
10.
Effendi
,
N. S.
, and
Kim
,
K. J.
,
2017
, “
Orientation Effects on Natural Convective Performance of Hybrid Fin Heat Sinks
,”
Appl. Therm. Eng.
,
123
, pp.
527
536
.
11.
Karlapalem
,
V.
,
Rath
,
S.
, and
Dash
,
S. K.
,
2019
, “
Orientation Effects on Laminar Natural Convection Heat Transfer From Branching Fins
,”
Int. J. Therm. Sci.
,
142
, pp.
89
105
.
12.
Karlapalem
,
V.
, and
Dash
,
S. K.
,
2021
, “
Design of Perforated Branching Fins in Laminar Natural Convection
,”
Int. Commun. Heat Mass Transfer
,
120
, pp.
1
17
.
13.
Karlapalem
,
V.
, and
Dash
,
S. K.
,
2023
, “
On the Enhancement of Natural Convection Heat Transfer With Multi-branching Fins
,”
Int. J. Therm. Sci.
,
183
, pp.
1
15
.
14.
Ray
,
R.
,
Mohanty
,
A.
,
Patro
,
P.
, and
Tripathy
,
K. C.
,
2022
, “
Performance Enhancement of Heat Sink With Branched and Interrupted Fins
,”
Int. Commun. Heat Mass Transfer
,
133
, pp.
1
11
.
15.
Ahmadi
,
M.
,
Mostafavi
,
G.
, and
Bahrami
,
M.
,
2014
, “
Natural Convection From Rectangular Interrupted Fins
,”
Int. J. Therm. Sci.
,
82
(
1
), pp.
62
71
.
16.
Mousavi
,
H.
,
Rabienataj Darzi
,
A. A.
,
Farhadi
,
M.
, and
Omidi
,
M.
,
2018
, “
A Novel Heat Sink Design With Interrupted, Staggered and Capped Fins
,”
Int. J. Therm. Sci.
,
127
, pp.
312
320
.
17.
Feng
,
S.
,
Shi
,
M.
,
Yan
,
H.
,
Sun
,
S.
,
Li
,
F.
, and
Lu
,
T. J.
,
2018
, “
Natural Convection in a Cross-Fin Heat Sink
,”
Appl. Therm. Eng.
,
132
, pp.
30
37
.
18.
Kim
,
D. K.
,
2012
, “
Thermal Optimization of Plate-Fin Heat Sinks With Fins of Variable Thickness Under Natural Convection
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
752
761
.
19.
Li
,
B.
, and
Byon
,
C.
,
2015
, “
Orientation Effects on Thermal Performance of Radial Heat Sinks With a Concentric Ring Subject to Natural Convection
,”
Int. J. Heat Mass Transfer
,
90
, pp.
102
108
.
20.
Oh
,
Y. W.
,
Choi
,
Y. S.
,
Ha
,
M. Y.
, and
Min
,
J. K.
,
2019
, “
A Numerical Study on the Buoyancy Effect Around Slanted-Pin Fins Mounted on a Vertical Plate (Part-I: Laminar Natural Convection)
,”
Int. J. Heat Mass Transfer
,
132
, pp.
731
744
.
21.
Rao
,
A. K.
, and
Somkuwar
,
V.
,
2021
, “
Heat Transfer of a Tapered Fin Heat Sink Under Natural Convection
,”
Mater. Today: Proc.
,
46
, pp.
7886
7891
.
22.
Abbas
,
A.
,
Qasrawi
,
F.
, and
Wang
,
C. C.
,
2020
, “
Investigation of Performance Augmentation for Natural Convective Heatsink With the Help of Chimney
,”
Appl. Therm. Eng.
,
178
, pp.
1
14
.
23.
Chang
,
S. W.
,
Wu
,
H. W.
,
Guo
,
D. Y.
,
Shi
,
J. J.
, and
Chen
,
T. H.
,
2017
, “
Heat Transfer Enhancement of Vertical Dimpled Fin Array in Natural Convection
,”
Int. J. Heat Mass Transfer
,
106
, pp.
781
792
.
24.
Charles
,
R.
, and
Wang
,
C. C.
,
2014
, “
A Novel Heat Dissipation Fin Design Applicable for Natural Convection Augmentation
,”
Int. Commun. Heat Mass Transfer
,
59
, pp.
24
29
.
25.
Abbas
,
A.
, and
Wang
,
C. C.
,
2020
, “
Augmentation of Natural Convection Heat Sink Via Using Displacement Design
,”
Int. J. Heat Mass Transfer
,
154
, pp.
1
14
.
26.
Jeon
,
D.
, and
Byon
,
C.
,
2017
, “
Thermal Performance of Plate Fin Heat Sinks With Dual-Height Fins Subject to Natural Convection
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1086
1092
.
27.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2016
, “
Numerical Investigation of Natural Convection Heat Transfer Over Annular Finned Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
96
, pp.
330
345
.
28.
Nemati
,
H.
,
Moradaghay
,
M.
,
Moghimi
,
M. A.
, and
Meyer
,
J. P.
,
2020
, “
Natural Convection Heat Transfer Over Horizontal Annular Elliptical Finned Tubes
,”
Int. Commun. Heat Mass Transfer
,
118
, pp.
1
10
.
29.
Shen
,
Q.
,
Sun
,
D.
,
Xu
,
Y.
,
Jin
,
T.
,
Zhao
,
X.
,
Zhang
,
N.
,
Wu
,
K.
, and
Huang
,
Z.
,
2016
, “
Natural Convection Heat Transfer Along Vertical Cylinder Heat Sinks With Longitudinal Fins
,”
Int. J. Therm. Sci.
,
100
, pp.
457
464
.
30.
Huang
,
C. H.
, and
Chen
,
W. Y.
,
2022
, “
A Natural Convection Horizontal Straight-Fin Heat Sink Design Problem to Enhance Heat Dissipation Performance
,”
Int. J. Therm. Sci.
,
176
, pp.
1
13
.
31.
Zhang
,
K.
,
Li
,
M. J.
,
Wang
,
F. L.
, and
He
,
Y. L.
,
2020
, “
Experimental and Numerical Investigation of Natural Convection Heat Transfer of W-Type Fin Arrays
,”
Int. J. Heat Mass Transfer
,
152
, pp.
1
13
.
32.
Ghandouri
,
I. E.
,
Maakoul
,
A. E.
,
Saadeddine
,
S.
, and
Meziane
,
M.
,
2021
, “
Thermal Performance of a Corrugated Heat Dissipation Fin Design: A Natural Convection Numerical Analysis
,”
Int. J. Heat Mass Transfer
,
180
, pp.
1
18
.
33.
Ghandouri
,
I. E.
,
Maakoul
,
A. E.
,
Saadeddine
,
S.
, and
Meziane
,
M.
,
2020
, “
Design and Numerical Investigations of Natural Convection Heat Transfer of a New Rippling Fin Shape
,”
Appl. Therm. Eng.
,
178
, pp.
1
14
.
34.
Haghighi
,
S. S.
,
Goshayeshi
,
H. R.
, and
Safaei
,
M. R.
,
2018
, “
Natural Convection Heat Transfer Enhancement in New Designs of Plate-Fin Based Heat Sinks
,”
Int. J. Heat Mass Transfer
,
125
, pp.
640
647
.
35.
Lee
,
Y. J.
, and
Kim
,
S. J.
,
2021
, “
Thermal Optimization of the Pin-Fin Heat Sink With Variable Fin Density Cooled by Natural Convection
,”
Appl. Therm. Eng.
,
190
, pp.
1
15
.
36.
Sung
,
G.
,
Na
,
D. Y.
, and
Yook
,
S. J.
,
2023
, “
Enhancement of the Cooling Performance of a Pin Fin Heat Sink Based on the Chimney Effect Using Aluminum Tape
,”
Int. J. Heat Mass Transfer
,
201
, pp.
1
11
.
37.
Saravanakumar
,
T.
, and
Senthil Kumar
,
D.
,
2019
, “
Performance Analysis on Heat Transfer Characteristics of Heat Sink With Baffles Attachment
,”
Int. J. Therm. Sci.
,
142
, pp.
14
19
.
38.
Chang
,
S. W.
,
Sadeghianjahromi
,
A.
,
Sheu
,
W. J.
, and
Wang
,
C. C.
,
2022
, “
Numerical Study of Oblique Fins Under Natural Convection With Experimental Validation
,”
Int. J. Therm. Sci.
,
179
, pp.
1
21
.
39.
Serkan Şahin
,
Y.
,
İsmet Toprak
,
B.
,
Solmaz
,
İ.
, and
Bayer
,
Ö.
,
2023
, “
Investigation of Flow and Heat Transfer Behavior of Integrated Pin Fin-Aluminum Foam Heat Sink
,”
Appl. Therm. Eng.
,
219
, pp.
1
24
.
40.
Tikadar
,
A.
, and
Kumar
,
S.
,
2023
, “
Local Hotspot Thermal Management Using Metal Foam Integrated Heat Sink
,”
Appl. Therm. Eng.
,
221
, pp.
1
10
.
41.
Towsyfyan
,
H.
,
Freegah
,
B.
,
Hussain
,
A. A.
, and
El-Deen Faik
,
A. M.
,
2023
, “
Novel Design to Enhance the Thermal Performance of Plate-Fin Heat Sinks Based on CFD and Artificial Neural Networks
,”
Appl. Therm. Eng.
,
219
, pp.
1
13
.
42.
Zou
,
Y.
,
Xia
,
Y.
,
Ren
,
H.
,
Zhang
,
C.
,
Wang
,
M.
,
Tang
,
X.
, and
Ding
,
S.
,
2023
, “
Heat Dissipation Design and Optimization of High-Power LED Lamps
,”
Therm. Sci. Eng. Prog.
,
37
, pp.
1
7
.
43.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Flow and Thermal Transport Characteristics of Triply-Periodic Minimal Surface (TPMS)-Based Gyroid and Schwarz-P Cellular Materials
,”
Numer. Heat Transfer Part A
,
79
(
8
), pp.
553
569
.
44.
Modrek
,
M.
,
Viswanath
,
A.
,
Khan
,
K. A.
,
Ali
,
M. I. H.
, and
Abu Al-Rub
,
R. K.
,
2022
, “
An Optimization Case Study to Design Additively Manufacturable Porous Heat Sinks Based on Triply Periodic Minimal Surface (TPMS) Lattices
,”
Case Stud. Therm. Eng.
,
36
, pp.
1
21
.
45.
Samson
,
S.
,
Tran
,
P.
, and
Marzocca
,
P.
,
2023
, “
Design and Modelling of Porous Gyroid Heatsinks: Influences of Cell Size, Porosity and Material Variation
,”
Appl. Therm. Eng.
,
235
, pp.
1
18
.
46.
Joo
,
Y.
,
Lee
,
I.
, and
Kim
,
S. J.
,
2018
, “
Efficient Three-Dimensional Topology Optimization of Heat Sinks in Natural Convection Using the Shape-Dependent Convection Model
,”
Int. J. Heat Mass Transfer
,
127
, pp.
32
40
.
47.
Joo
,
Y.
,
Lee
,
I.
, and
Kim
,
S. J.
,
2017
, “
Topology Optimization of Heat Sinks in Natural Convection Considering the Effect of Shape-Dependent Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
109
, pp.
123
133
.
48.
Baobaid
,
N.
,
Ali
,
M. I.
,
Khan
,
K. A.
, and
Abu Al-Rub
,
R. K.
,
2022
, “
Fluid Flow and Heat Transfer of Porous TPMS Architected Heat Sinks in Free Convection Environment
,”
Case Stud. Therm. Eng.
,
33
, pp.
1
22
.
49.
Li
,
H. L.
,
Lan
,
D. Y.
,
Zhang
,
X. M.
, and
Cao
,
B. Y.
,
2022
, “
Investigation of the Parameter-Dependence of Topology-Optimized Heat Sinks in Natural Convection
,”
Heat Transfer Eng.
,
43
(
11
), pp.
922
936
.
You do not currently have access to this content.