Abstract

Owing to their exceptionally high thermal conductivity, there is a growing demand for graphene nanoparticles in phase transition heat transfer applications. This research delves into the exploration of various critical phenomena within the realm of surface science, specifically focusing on interactions at solid-liquid and liquid-liquid interfaces. In this work, graphene nanoparticles at varying concentrations are subject to electrochemical deposition on a microporous copper substrate to form graphene coated over microporous copper (GCOMC). The study encompasses a comprehensive analysis of surface characteristics, such as porosity, roughness, and wettability. Furthermore, the study involves the calculation of two key heat transfer metrics, the critical heat flux (CHF) and the boiling heat transfer coefficient (BHTC), through the execution of pool boiling experiments. The findings of this research underscore the remarkable superiority of GCOMC surfaces over their uncoated copper counterparts in terms of boiling performance. Particularly, the GCOMC surface showcases an impressive 87.5% enhancement in CHF and a 233% increase in BHTC compared to the bare copper surface. Furthermore, this investigation delves into a detailed quantitative analysis of bubble behavior, encompassing parameters such as bubble departure diameter, bubble departure frequency, and nucleation site density, employing high-speed camera techniques to comprehensively understand the underlying processes.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Jothi Prakash
,
C. G.
, and
Prasanth
,
R.
,
2018
, “
Enhanced Boiling Heat Transfer by Nano Structured Surfaces and Nanofluids
,”
Renewable Sustainable Energy Rev.
,
82
(
3
), pp.
4028
4043
.
2.
Chang
,
X.
,
Jin
,
Z.
,
Sun
,
Y.
,
Wang
,
Y.
,
Yang
,
Z.
, and
Ding
,
G.
,
2018
, “
An All-Metal Hollow Microstructure for Pool-Boiling Chip-Integrated Cooling Based on Electroplating
,”
Proceedings of the IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)
,
Singapore
,
Apr. 22–26
, pp.
32
35
.
3.
Golobic
,
I.
,
Petkovsek
,
J.
, and
Kenning
,
D. B. R.
,
2012
, “
Bubble Growth and Horizontal Coalescence in Saturated Pool Boiling on a Titanium Foil, Investigated by High-Speed IR Thermography
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1385
1402
.
4.
Kalita
,
S.
,
Sen
,
P.
,
Sen
,
D.
,
Das
,
S.
,
Das
,
A. K.
, and
Saha
,
B. B.
,
2021
, “
Experimental Study of Nucleate Pool Boiling Heat Transfer on Microporous Structured by Chemical Etching Method
,”
Therm. Sci. Eng. Prog.
,
26
, p.
101114
.
5.
Sharifzadeh
,
A. M.
,
Moghadasi
,
H.
,
Saffari
,
H.
, and
Delpisheh
,
M.
,
2022
, “
Experimental Investigation of Pool Boiling Heat Transfer Enhancement Using Electrodeposited Open-Cell Metal Foam
,”
Int. J. Therm. Sci.
,
176
, p.
107536
.
6.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
J. Heat Mass Transfer
,
123
(
6
), pp.
1071
1079
.
7.
Kumar
,
N.
,
Raza
,
M. Q.
,
Seth
,
D.
, and
Raj
,
R.
,
2019
, “
Surface-Active Ionic Liquids as Potential Additive for Pool Boiling Based Energy Systems
,”
J. Mol. Liq.
,
287
, p.
110953
.
8.
Gheitaghy
,
A. M.
,
Saffari
,
H.
,
Ghasimi
,
D.
, and
Ghasemi
,
A.
,
2017
, “
Effect of Electrolyte Temperature on Porous Electrodeposited Copper for Pool Boiling Enhancement
,”
Appl. Therm. Eng.
,
113
, pp.
1097
1106
.
9.
Sohag
,
F. A.
,
Beck
,
F. R.
,
Mohanta
,
L.
,
Cheung
,
F. B.
,
Segall
,
A. E.
,
Eden
,
T. J.
, and
Potter
,
J. K.
,
2017
, “
Effects of Subcooling on Downward Facing Boiling Heat Transfer With Microporous Coating Formed by Cold Spray Technique
,”
Int. J. Heat Mass Transfer
,
106
, pp.
767
780
.
10.
Xu
,
Z. G.
,
Qu
,
Z. Q.
,
Zhao
,
C. Y.
, and
Tao
,
W. Q.
,
2011
, “
Pool Boiling Heat Transfer on Open-Celled Metallic Foam Sintered Surface Under Saturation Condition
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3856
3867
.
11.
McHale
,
J. P.
,
Garimella
,
S. V.
,
Fisher
,
T. S.
, and
Powell
,
G. A.
,
2011
, “
Pool Boiling Performance Comparison of Smooth and Sintered Copper Surfaces with and Without Carbon Nanotubes
,”
Nanoscale Microscale Thermophys. Eng.
,
15
(
3
), pp.
133
150
.
12.
Pastuszko
,
R.
, and
Wójcik
,
T. M.
,
2015
, “
Experimental Investigations and a Simplified Model for Pool Boiling on Micro-Fins With Sintered Perforated Foil
,”
Exp. Therm. Fluid Sci.
,
63
, pp.
34
44
.
13.
Jaikumar
,
A.
,
Gupta
,
A.
,
Kandlikar
,
S. G.
,
Yang
,
C. Y.
, and
Su
,
C. Y.
,
2017
, “
Scale Effects of Graphene and Graphene Oxide Coatings on Pool Boiling Enhancement Mechanisms
,”
Int. J. Heat Mass Transfer
,
109
, pp.
357
366
.
14.
Sadaghiani
,
A. K.
,
Motezakker
,
A. R.
,
Kasap
,
S.
,
Kaya
,
I. I.
, and
Koşar
,
A.
,
2018
, “
Foamlike 3D Graphene Coatings for Cooling Systems Involving Phase Change
,”
ACS Omega
,
3
(
3
), pp.
2804
2811
.
15.
Udaya
,
K. G.
,
Soni
,
K.
,
Suresh
,
S.
,
Ghosh
,
K.
,
Thansekhar
,
M. R.
, and
Dinesh Babu
,
P.
,
2018
, “
Modified Surfaces Using Seamless Graphene/Carbon Nanotubes Based Nanostructures for Enhancing Pool Boiling Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
96
, pp.
493
506
.
16.
Takata
,
Y.
,
Hidaka
,
S.
,
Masuda
,
M.
, and
Ito
,
T.
,
2003
, “
Pool Boiling on a Superhydrophilic Surface
,”
Int. J. Energy Res.
,
27
(
2
), pp.
111
119
.
17.
Lee
,
J.
, and
Son
,
G.
,
2015
, “
Numerical Simulation of Liquid Film Formation and Evaporation in Dip Coating
,”
Int. Commun. Heat Mass Transfer
,
68
, pp.
220
227
.
18.
Gupta
,
A.
,
Jaikumar
,
A.
,
Kandlikar
,
S. G.
,
Rishi
,
A.
, and
Layman
,
A.
,
2018
, “
A Multiscale Morphological Insight Into Graphene Based Coatings for Pool Boiling Applications
,”
Heat Transfer Eng.
,
39
(
15
), pp.
1331
1343
.
19.
Ahn
,
H. S.
,
Kim
,
J. M.
,
Kaviany
,
M.
, and
Kim
,
M. H.
,
2014
, “
Pool Boiling Experiments in Reduced Graphene Oxide Colloids. Part I—Boiling Characteristics
,”
Int. J. Heat Mass Transfer
,
74
, pp.
501
512
.
20.
Zhao
,
Y. H.
,
Masuoka
,
T.
, and
Tsuruta
,
T.
,
2002
, “
Unified Theoretical Prediction of Fully Developed Nucleate Boiling and Critical Heat Flux Based on a Dynamic Microlayer Model
,”
Int. J. Heat Mass Transfer
,
45
(
15
), pp.
3189
3197
.
21.
Park
,
S. D.
,
Won
,
L. S.
,
Kang
,
S.
,
Bang
,
I. C.
,
Kim
,
J. H.
,
Shin
,
H. S.
,
Lee
,
D. W.
, and
Won Lee
,
D.
,
2010
, “
Effects of Nanofluids Containing Graphene/Graphene-Oxide Nanosheets on Critical Heat Flux
,”
Appl. Phys. Lett.
,
97
(
2
), p.
023103
.
22.
Fan
,
L. W.
,
Li
,
J. Q.
,
Li
,
D. Y.
,
Zhang
,
L.
,
Yu
,
Z. T.
, and
Cen
,
K. F.
,
2015
, “
The Effect of Concentration on Transient Pool Boiling Heat Transfer of Graphene-Based Aqueous Nanofluids
,”
Int. J. Therm. Sci.
,
91
, pp.
83
95
.
23.
Esfahani
,
M. B. B.
,
Mohammad
,
S. S.
,
Abu-Hamdeh
,
N. H.
,
Bezzina
,
S.
,
Abdollahi
,
A.
,
Karimipour
,
A.
,
Ghaemi
,
F.
, and
Baleanu
,
D.
,
2022
, “
The Effect of Sedimentation Phenomenon of the Additives Silver Nano Particles on Water Pool Boiling Heat Transfer Coefficient: A Comprehensive Experimental Study
,”
J. Mol. Liq.
,
345
, p.
117891
.
24.
Jo
,
H. J.
,
Noh
,
H.
,
Kaviany
,
M.
,
Kim
,
J. M.
,
Kim
,
M. H.
, and
Ahn
,
H. S.
,
2015
, “
Tunable, Self-Assembled 3D Reduced Graphene Oxide Structures Fabricated via Boiling
,”
Carbon
,
81
, pp.
357
366
.
25.
Kalita
,
S.
,
Sen
,
D.
,
Sen
,
P.
,
Das
,
S.
, and
Saha
,
B. B.
,
2023
, “
Pool Boiling Heat Transfer Enhancement and Bubble Visualization on a Microporous Copper Over CuO Filmed Surface Through Combination of Chemical Etching and Electrochemical Deposition
,”
Int. Commun. Heat Mass Transfer
,
144
, p.
106740
.
26.
Ahn
,
H. S.
,
Kim
,
H.
,
Kim
,
J. M.
,
Park
,
S. C.
,
Kim
,
J. M.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2013
, “
Controllable Pore Size of Three Dimensional Self-Assembled Foam-Like Graphene and Its Wettability
,”
Carbon
,
64
, pp.
27
34
.
27.
Zou
,
A.
,
Singh
,
D. P.
, and
Maroo
,
S. C.
,
2016
, “
Early Evaporation of Microlayer for Boiling Heat Transfer Enhancement
,”
Langmuir
,
32
(
42
), pp.
10808
10814
.
28.
Rahman
,
M. M.
,
Ölçeroğlu
,
E.
, and
McCarthy
,
M.
,
2014
, “
Role of Wickability on the Critical Heat Flux of Structured Superhydrophilic Surfaces
,”
Langmuir
,
30
(
37
), pp.
11225
11234
.
29.
Jaikumar
,
A.
,
Rishi
,
A.
,
Gupta
,
A.
, and
Kandlikar
,
S. G.
,
2017
, “
Microscale Morphology Effects of Copper–Graphene Oxide Coatings on Pool Boiling Characteristics
,”
ASME J. Heat Transfer
,
139
(
11
), p.
111509
.
30.
Seo
,
H.
,
Chu
,
J. H.
,
Kwon
,
S. Y.
, and
Bang
,
I. C.
,
2015
, “
Pool Boiling CHF of Reduced Graphene Oxide, Graphene, and SiC-Coated Surfaces Under Highly Wettable FC-72
,”
Int. J. Heat Mass Transfer
,
82
, pp.
490
502
.
31.
Ha
,
M.
, and
Graham
,
S.
,
2017
, “
Pool Boiling Characteristics and Critical Heat Flux Mechanisms of Microporous Surfaces and Enhancement Through Structural Modification
,”
Appl. Phys. Lett.
,
111
(
9
), p.
091601
.
32.
Zhou
,
W.
,
Luan
,
Y.
,
Dai
,
X.
, and
Hu
,
X.
,
2019
, “
Study on Microbubble Dynamic Behaviors at Vertical Micro-Nano Hybrid Surfaces Based on Open Capillary Microgrooves Heat Sink
,”
Int. J. Therm. Sci.
,
135
, pp.
434
444
.
33.
Sen
,
P.
,
Kalita
,
S.
,
Sen
,
D.
,
Das
,
S.
, and
Das
,
A. K.
,
2022
, “
Pool Boiling Heat Transfer on a Micro-Structured Copper Oxide Surface With Varying Wettability
,”
Chem. Eng. Technol.
,
45
(
5
), pp.
808
816
.
34.
Rishi
,
A. M.
,
Kandlikar
,
S. G.
, and
Gupta
,
A.
,
2019
, “
Improved Wettability of Graphene Nanoplatelets (GNP)/Copper Porous Coatings for Dramatic Improvements in Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
132
, pp.
462
472
.
35.
Sen
,
P.
,
Kalita
,
S.
,
Sen
,
D.
,
Das
,
A. K.
, and
Saha
,
B. B.
,
2022
, “
Pool Boiling Heat Transfer and Bubble Dynamics of Modified Copper Micro-Structured Surfaces
,”
Int. Commun. Heat Mass Transfer
,
134
, p.
106039
.
36.
Rishi
,
A. M.
,
Kandlikar
,
S. G.
, and
Gupta
,
A.
,
2019
, “
Repetitive Pool Boiling Runs: A Controlled Process to Form Reduced Graphene Oxide Surfaces From Graphene Oxide With Tunable Surface Chemistry and Morphology
,”
Ind. Eng. Chem. Res.
,
58
(
17
), pp.
7156
7165
.
37.
Zhang
,
L.
, and
Xu
,
J.
,
2022
, “
Nucleate Boiling of Thin Liquid Films on Nanostructured Surfaces With Hybrid Wettability Using Molecular Dynamics Simulation
,”
J. Mol. Liq.
,
366
, p.
120272
.
38.
Holman
,
J. P.
,
2007
,
Experimental Methods for Engineers
, 7th ed.,
Tata McGraw Hill Education Private Limited
,
New York
.
39.
Wang
,
X.
, and
Zhang
,
Q.
,
2020
, “
Role of Surface Roughness in the Wettability, Surface Energy and Flotation Kinetics of Calcite
,”
Powder Technol.
,
371
, pp.
55
63
.
40.
Patankar
,
N. A.
,
2004
, “
Transition Between Superhydrophobic States on Rough Surfaces
,”
Langmuir
,
20
(
17
), pp.
7097
7102
.
41.
Gheitaghy
,
A. M.
,
Saffari
,
H.
, and
Mohebbi
,
M.
,
2016
, “
Investigation Pool Boiling Heat Transfer in U-Shaped Mesochannel With Electrodeposited Porous Coating
,”
Exp. Therm. Fluid Sci.
,
76
, pp.
87
97
.
42.
Elkholy
,
A.
, and
Kempers
,
R.
,
2020
, “
Enhancement of Pool Boiling Heat Transfer Using 3D-Printed Polymer Fixtures
,”
Exp. Therm. Fluid Sci.
,
114
, p.
110056
.
43.
Das
,
A. K.
,
Das
,
P. K.
, and
Saha
,
P.
,
2007
, “
Nucleate Boiling of Water From Plain and Structured Surfaces
,”
Exp. Therm. Fluid Sci.
,
31
(
8
), pp.
967
977
.
44.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2012
, “
Effect of Open Microchannel Geometry on Pool Boiling Enhancement
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1004
1013
.
45.
Rohsenow
,
W. M.
,
1951
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,” Technical report no. 5, Cambridge, Mass.: M.I.T. Division of Industrial Cooperation.
46.
Zhou
,
W.
,
Hu
,
X.
,
Mao
,
L.
, and
He
,
Y.
,
2020
, “
Markedly Enhanced Pool Boiling Heat Transfer Performance on Microporous Copper Surfaces Fabricated Utilizing a Facile Wire Cutting Process
,”
Appl. Therm. Eng.
,
165
, p.
114396
.
47.
Özbey
,
A.
,
Karimzadehkhouei
,
M.
,
Sefiane
,
K.
, and
Koşar
,
A.
,
2017
, “
Changing Bubble Dynamics in Subcooled Boiling With TiO2 Nanoparticles on a Platinum Wire
,”
J. Mol. Liq.
,
242
, pp.
456
470
.
48.
Modi
,
M.
,
Kangude
,
P.
, and
Srivastava
,
A.
,
2020
, “
Performance Evaluation of Alumina Nanofluids and Nanoparticles-Deposited Surface on Nucleate Pool Boiling Phenomena
,”
Int. J. Heat Mass Transfer
,
146
, p.
118833
.
49.
Zhou
,
W.
,
Mao
,
L.
,
Hu
,
X.
, and
He
,
Y.
,
2019
, “
An Optimized Graphene Oxide Self-Assembly Surface for Significantly Enhanced Boiling Heat Transfer
,”
Carbon
,
150
, pp.
168
178
.
50.
Kocamustafaogullari
,
G.
, and
Ishii
,
M.
,
1983
, “
Interfacial Area and Nucleation Site Density in Boiling Systems
,”
Int. J. Heat Mass Transfer
,
26
(
9
), pp.
1377
1387
.
51.
Benjamin
,
R. J.
, and
Balakrishnan
,
A. R.
,
1997
, “
Nucleation Site Density in Pool Boiling of Saturated Pure Liquids: Effect of Surface Microroughness and Surface and Liquid Physical Properties
,”
Exp. Therm. Fluid Sci.
,
15
(
1
), pp.
32
42
.
52.
Zhang
,
K.
,
Bai
,
L.
,
Lin
,
G.
,
Jin
,
H.
, and
Wen
,
D.
,
2019
, “
Experimental Study on Pool Boiling in a Porous Artery Structure
,”
Appl. Therm. Eng.
,
149
, pp.
377
384
.
53.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation
,
Oxford University Press
,
New York
.
54.
Cole
,
R.
,
1967
, “
Bubble Frequencies and Departure Volumes at Subatmospheric Pressures
,”
AIChE J.
,
13
(
4
), pp.
779
783
.
55.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
,
2009
, “
How Does Surface Wettability Influence Nucleate Boiling?
,”
C.R. Mec.
,
337
(
5
), pp.
251
259
.
56.
Akbari
,
E.
,
Gheitaghy
,
A. M.
,
Saffari
,
H.
, and
Hosseinalipour
,
S. M.
,
2017
, “
Effect of Silver Nanoparticle Deposition in Re-Entrant Inclined Minichannel on Bubble Dynamics for Pool Boiling Enhancement
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
390
401
.
57.
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2010
, “
Bubble Nucleation Characteristics in Pool Boiling of a Wetting Liquid on Smooth and Rough Surfaces
,”
Int. J. Multiph. Flow
,
36
(
4
), pp.
249
260
.
58.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” Ph.D. thesis,
University of California
,
Los Angeles, CA
.
59.
Das
,
S.
,
Kumar
,
D. S.
, and
Bhaumik
,
S.
,
2016
, “
Experimental Study of Nucleate Pool Boiling Heat Transfer of Water on Silicon Oxide Nanoparticle Coated Copper Heating Surface
,”
Appl. Therm. Eng.
,
96
, pp.
555
567
.
60.
Das
,
S.
,
Saha
,
B.
, and
Bhaumik
,
S.
,
2017
, “
Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization With Crystalline TiO2 Nanostructure
,”
Appl. Therm. Eng.
,
113
, pp.
1345
1357
.
61.
Dharmendra
,
M.
,
Suresh
,
S.
,
Sujith Kumar
,
C. S.
, and
Yang
,
Q.
,
2016
, “
Pool Boiling Heat Transfer Enhancement Using Vertically Aligned Carbon Nanotube Coatings on a Copper Substrate
,”
Appl. Therm. Eng.
,
99
, pp.
61
71
.
62.
Gupta
,
S. K.
, and
Misra
,
R. D.
,
2018
, “
Experimental Study of Pool Boiling Heat Transfer on Copper Surfaces With Cu-Al2O3 Nanocomposite Coatings
,”
Int. Commun. Heat Mass Transfer
,
97
, pp.
47
55
.
63.
Patil
,
C. M.
,
Santhanam
,
K. S. V.
, and
Kandlikar
,
S. G.
,
2014
, “
Development of a Two-Step Electrodeposition Process for Enhancing Pool Boiling
,”
Int. J. Heat Mass Transfer
,
79
, pp.
989
1001
.
64.
Kwark
,
S. M.
,
Kumar
,
R.
,
Moreno
,
G.
,
Yoo
,
J.
, and
You
,
S. M.
,
2010
, “
Pool Boiling Characteristics of Low Concentration Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
972
981
.
65.
Betz
,
A. R.
,
Xu
,
J.
,
Qiu
,
H.
, and
Attinger
,
D.
,
2010
, “
Do Surfaces With Mixed Hydrophilic and Hydrophobic Areas Enhance Pool Boiling?
Appl. Phys. Lett.
,
97
(
14
), p.
141909
.
66.
Shi
,
B.
,
Wang
,
Y.
, and
Chen
,
K.
,
2015
, “
Pool Boiling Heat Transfer Enhancement With Copper Nanowire Arrays
,”
Appl. Therm. Eng.
,
75
, pp.
115
121
.
67.
Dai
,
X.
,
Huang
,
X.
,
Yang
,
F.
,
Li
,
X.
,
Sightler
,
J.
,
Yang
,
Y.
, and
Li
,
C.
,
2013
, “
Enhanced Nucleate Boiling on Horizontal Hydrophobic-Hydrophilic Carbon Nanotube Coatings
,”
Appl. Phys. Lett.
,
102
(
16
), p.
161605
.
You do not currently have access to this content.