Abstract

Thermal processes constitute a significant portion of energy consumption in the industrial sector. In this context, pinch analysis has emerged as a powerful method for achieving substantial energy savings. By systematically analyzing process streams and their heat transfer characteristics, pinch analysis enables the identification of heat recovery opportunities, leading to the design of an optimized heat exchanger network that minimizes energy requirements. In this study, a formulated stream splitting method is proposed to design a feasible minimum energy requirement heat exchanger network. This method aims to achieve two main goals. First, it gives a practical formulated method to help the designer when splitting streams and focuses on splitting the streams in such a way that creates sub-streams with the exact enthalpy required to satisfy heat exchanges with a specific number of streams, in order to minimize the need for process-utility heat exchangers whenever possible. Subsequently, the method aims to eliminate exergy destruction caused by temperature differences in the mixer used to recombine the split streams, by ensuring an isothermal mixture of streams, preventing unnecessary energy losses. The design of the heat exchanger network is conducted using the hint software, allowing for a comprehensive and detailed analysis of each step. The results obtained show that the heat exchanger network attained not only achieves the minimum energy consumption but also mitigates exergy destruction and avoids unnecessary process-utility heat exchangers, resulting in enhanced overall system performance.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Linnhoff
,
B.
, and
Flower
,
J. R.
,
1978
, “
Synthesis of Heat Exchanger Networks: I. Systematic Generation of Energy Optimal Networks
,”
AIChE J.
,
24
(
5
), pp.
633
642
.
2.
Kemp
,
I. C.
,
2011
,
Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy
,
Elsevier
,
New York
.
3.
Klemeš
,
Z.
,
Varbanov
,
J. J.
, and
Kravanja
,
P. S.
,
2013
, “
Recent Developments in Process Integration
,”
Chem. Eng. Res. Des.
,
91
(
11
), pp.
2037
2053
.
4.
Klemeš
,
J. J.
, and
Kravanja
,
Z.
,
2013
, “
Forty Years of Heat Integration: Pinch Analysis (PA) and Mathematical Programming (MP)
,”
Curr. Opin. Chem. Eng.
,
2
(
4
), pp.
461
474
.
5.
Furman
,
K. C.
, and
Sahinidis
,
N. V.
,
2002
, “
A Critical Review and Annotated Bibliography for Heat Exchanger Network Synthesis in the 20th Century
,”
Ind. Eng. Chem. Res.
,
41
(
10
), pp.
2335
2370
.
6.
Morar
,
M.
, and
Agachi
,
P. S.
,
2010
, “
Important Contributions in Development and Improvement of the Heat Integration Techniques
,”
Comput. Chem. Eng.
,
34
(
9
), pp.
1171
1179
.
7.
Sreepathi
,
B. K.
, and
Rangaiah
,
G. P.
,
2014
, “
Review of Heat Exchanger Network Retrofitting Methodologies and Their Applications
,”
Ind. Eng. Chem. Res.
,
53
(
28
), pp.
11205
11220
.
8.
Ajao
,
K. R.
, and
Akande
,
H. F.
,
2009
, “
Energy Integration of Crude Distillation Unit Using Pinch Analysis
,”
Researcher
,
1
(
2
), pp.
54
66
.
9.
Khorshidi
,
J.
,
Zare
,
E.
, and
Khademi
,
A. R.
,
2016
, “
Analysis of Heat Exchanger Network of Distillation Unit of Shiraz Oil Refinery
,”
Int. J. Electr. Comput. Energ. Electron. Commun. Eng.
,
10
(
9
), pp.
1251
1258
.
10.
Tokos
,
P.
,
Pintarič
,
H.
, and
Glavič
,
Z. N.
,
2010
, “
Energy Saving Opportunities in Heat Integrated Beverage Plant Retrofit
,”
Appl. Therm. Eng.
,
30
(
1
), pp.
36
44
.
11.
Miah
,
S.
,
Griffiths
,
J. H.
,
McNeill
,
A.
,
Poonaji
,
R.
,
Martin
,
I.
,
Yang
,
R.
, and
Morse
,
A.
,
2014
, “
Heat Integration in Processes With Diverse Production Lines: A Comprehensive Framework and an Application in Food Industry
,”
Appl. Energy
,
132
, pp.
452
464
.
12.
Brown
,
J.
,
Maréchal
,
D.
, and
Paris
,
F.
,
2005
, “
A Dual Representation for Targeting Process Retrofit, Application to a Pulp and Paper Process
,”
Appl. Therm. Eng.
,
25
(
8
), pp.
1067
1082
.
13.
Bonhivers
,
P. R.
, and
Stuart
,
J.-C.
,
2013
, “Applications of Process Integration Methodologies in the Pulp and Paper Industry,”
Handbook of Process Integration (PI)
,
J. J.
Klemes
, ed., Vol.
25
.
Woodhead Publishing Series in Energy
,
Cambridge, UK
, pp.
765
798
.
14.
Domenichini
,
A.
,
Gallio
,
R.
, and
Lazzaretto
,
M.
,
2010
, “
Combined Production of Hydrogen and Power From Heavy Oil Gasification: Pinch Analysis, Thermodynamic and Economic Evaluations
,”
Energy
,
35
(
6
), pp.
2184
2193
.
15.
Arriola-Medellín
,
A.
,
Manzanares-Papayanopoulos
,
E.
, and
Romo-Millares
,
C.
,
2014
, “
Diagnosis and Redesign of Power Plants Using Combined Pinch and Exergy Analysis
,”
Energy
,
72
, pp.
643
651
.
16.
Matsuda
,
T.
,
Tanaka
,
K.
,
Endou
,
S.
, and
Iiyoshi
,
M.
,
2012
, “
Energy Saving Study on a Large Steel Plant by Total Site Based Pinch Technology
,”
Appl. Therm. Eng.
,
43
, pp.
14
19
.
17.
Matsuda
,
T.
,
Tanaka
,
K.
,
Endou
,
S.
, and
Iiyoshi
,
M.
,
2013
, “Applications of Pinch Technology to Total Sites: A Heavy Chemical Industrial Complex and a Steel Plant,”
Handbook of Process Integration (PI)
,
J. J.
Klemes
, ed., Vol.
24
,
Woodhead Publishing Series in Energy
,
Cambridge, UK
, pp.
752
764
.
18.
Ghannadzadeh
,
A.
,
2013
, “
Exergetic Balances and Analysis in a Process Simulator: A Way to Enhance Process Energy Integration
,”
Doctoral dissertation
.
19.
Martín
,
Á.
, and
Mato
,
F. A.
,
2008
, “
HINT: An Educational Software for Heat Exchanger Network Design With the Pinch Method
,”
Educ. Chem. Eng.
,
3
(
1
), pp.
e6
e14
.
20.
Ghannadzadeh
,
A.
, and
Sadeqzadeh
,
M.
,
2017
, “
Exergy Aided Pinch Analysis to Enhance Energy Integration Towards Environmental Sustainability in a Chlorine-Caustic Soda Production Process
,”
Appl. Therm. Eng.
,
125
, pp.
1518
1529
.
21.
Bandyopadhyay
,
R.
,
Alkilde
,
O. F.
, and
Upadhyayula
,
S.
,
2019
, “
Applying Pinch and Exergy Analysis for Energy Efficient Design of Diesel Hydrotreating Unit
,”
J. Clean. Prod.
,
232
, pp.
337
349
.
22.
Bayomie
,
O. S.
,
Abdelaziz
,
O. Y.
, and
Gadalla
,
M. A.
,
2019
, “
Exceeding Pinch Limits by Process Configuration of an Existing Modern Crude Oil Distillation Unit–A Case Study From Refining Industry
,”
J. Clean. Prod.
,
231
, pp.
1050
1058
.
23.
Li
,
B. H.
,
Castillo
,
Y. E. C.
, and
Chang
,
C. T.
,
2019
, “
An Improved Design Method for Retrofitting Industrial Heat Exchanger Networks Based on Pinch Analysis
,”
Chem. Eng. Res. Des.
,
148
, pp.
260
270
.
24.
Fu
,
D.
,
Yu
,
Z.
, and
Lai
,
Y.
,
2021
, “
Linking Pinch Analysis and Shifted Temperature Driving Force Plot for Analysis and Retrofit of Heat Exchanger Network
,”
J. Clean. Prod.
,
315
, p.
128235
.
25.
Pavão
,
L. V.
,
Miranda
,
C. B.
,
Caballero
,
J. A.
,
Ravagnani
,
M. A.
, and
Costa
,
C. B.
,
2021
, “
Multiperiod Work and Heat Integration
,”
Energy Convers. Manage.
,
227
, p.
113587
.
26.
Mrayed
,
S.
,
Shams
,
M. B.
,
Al-Khayyat
,
M.
, and
Alnoaimi
,
N.
,
2021
, “
Application of Pinch Analysis to Improve the Heat Integration Efficiency in a Crude Distillation Unit
,”
Cleaner Eng. Technol.
,
4
, p.
100168
.
27.
Zhao
,
Y. J.
,
Zhang
,
Y. K.
,
Cui
,
Y.
,
Duan
,
Y. Y.
,
Huang
,
Y.
,
Wei
,
G. Q.
, and
Nimmo
,
W.
,
2022
, “
Pinch Combined With Exergy Analysis for Heat Exchange Network and Techno-Economic Evaluation of Coal Chemical Looping Combustion Power Plant With CO2 Capture
,”
Energy
,
238
, p.
121720
.
28.
Xu
,
Y.
,
Zhang
,
L.
,
Cui
,
G.
, and
Yang
,
Q.
,
2023
, “
A Heuristic Approach to Design a Cost-Effective and Low-CO2 Emission Synthesis in a Heat Exchanger Network With Crude Oil Distillation Units
,”
Energy
,
271
, p.
126972
.
29.
Rani
,
J.
,
Thakur
,
P.
, and
Majumder
,
S.
,
2023
, “
A Holistic Analysis of Chemical Process Performance Using Pinch Technology
,”
Indian Chem. Eng.
,
3
, pp.
e6
e14
.
30.
Wang
,
F.
,
Wang
,
B.
,
Gai
,
L.
,
Chen
,
Y.
,
Tao
,
H.
,
Zhu
,
B.
, and
Varbanov
,
P. S.
,
2023
, “
A Pinch Analysis-Based Method for LNG Cold Energy Multi-level Temperature Cascade Utilisation
,”
Chem. Eng. Trans.
,
103
, pp.
145
150
.
31.
Andiappan
,
V.
,
Rajakal
,
J. P.
, and
Wan
,
Y. K.
,
2023
, “
Pinch Analysis for Land-Constrained Agriculture Sector Planning
,”
Process Integr. Optim. Sustainability
, pp.
1
12
.
You do not currently have access to this content.