Abstract

Wicking structures have been widely used within passive heat transfer devices with high heat fluxes, such as heat pipes, to enhance their thermal performance. While wicking structures promote capillary pumping of the working fluid and thin film evaporation, they can result in capillary evaporation and further enhance the evaporation heat transfer. In this study, a 0.5 mm thick layer of 105 µm sintered copper particles was added to the inner wall of a copper tube, aiming to form an “annular flow” and enhance the heat transfer characteristics by taking advantage of thin film and capillary evaporation. Acetone was chosen as the working fluid, and the performance of an evaporation tube was tested for power inputs of 10, 30, 50, and 70 W. For each power input, trials were run at inclination angles varying from −90 deg to 90 deg to investigate the capillary effects. The temperature measurements showed that the temperature distribution along the evaporation tube is always downward sloping, meaning the temperature at the fluid inlet is larger than the outlet. Results show that an “annular flow” formed by a thin layer of sintered particles can promote thin film and capillary evaporation and, therefore, boost the evaporation heat transfer coefficient.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Hanlon
,
M. A.
, and
Ma
,
H. B.
,
2003
, “
Evaporation Heat Transfer in Sintered Porous Media
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
644
653
.
2.
Bigham
,
S.
, and
Moghaddam
,
S.
,
2015
, “
Microscale Study of Mechanisms of Heat Transfer During Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transfer
,
88
, pp.
111
121
.
3.
Bigham
,
S.
, and
Moghaddam
,
S.
,
2015
, “
Role of Bubble Growth Dynamics on Microscale Heat Transfer Events in Microchannel Flow Boiling Process
,”
Appl. Phys. Lett.
,
107
(
24
), p.
244103
.
4.
Palko
,
J. W.
,
Lee
,
H.
,
Agonafer
,
D. D.
,
Zhang
,
C.
,
Jung
,
K. W.
,
Moss
,
J.
,
Wilbur
,
J. D.
, et al
,
2016
, “
High Heat Flux Two-Phase Cooling of Electronics With Integrated Diamond/Porous Copper Heat Sinks and Microfluidic Coolant Supply
,”
Proceedings of the 15th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2016
,
Las Vegas, NV
,
May 31–June 3
, pp.
1511
1517
.
5.
Plawsky
,
J. L.
,
Fedorov
,
A. G.
,
Garimella
,
S. V.
,
Ma
,
H. B.
,
Maroo
,
S. C.
,
Chen
,
L.
, and
Nam
,
Y.
,
2014
, “
Nano- and Microstructures for Thin-Film Evaporation—A Review
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(
3
), pp.
251
269
.
6.
Thome
,
J. R.
,
2004
, “
Boiling in Microchannels: A Review of Experiment and Theory
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
128
139
.
7.
Xu
,
J.
,
Gan
,
Y.
,
Zhang
,
D.
, and
Li
,
X.
,
2005
, “
Microscale Boiling Heat Transfer in a Micro-timescale at High Heat Fluxes
,”
J. Micromech. Microeng.
,
15
(
2
), pp.
362
376
.
8.
Wang
,
Y.
,
Wang
,
P.
,
Wang
,
N.
,
Pan
,
Y.
,
Xu
,
J.
,
Shen
,
S.
,
Gan
,
Y.
,
Li
,
Y.
,
Zhang
,
W.
, and
Su
,
Q.
,
2005
, “
Transient Flow Pattern Based Microscale Boiling Heat Transfer Mechanisms
,”
Inst. Phys. Publ. J. Micromech. Microeng.
,
15
(
6
), pp.
1344
1361
.
9.
Dupont
,
V.
,
Thome
,
J. R.
, and
Jacobi
,
A. M.
,
2004
, “
Heat Transfer Model for Evaporation in Microchannels. Part II: Comparison With the Database
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3387
3401
.
10.
Kandlikar
,
S. G.
,
Widger
,
T.
,
Kalani
,
A.
, and
Mejia
,
V.
,
2013
, “
Enhanced Flow Boiling Over Open Microchannels With Uniform and Tapered Gap Manifolds
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061401
.
11.
Dai
,
X.
,
Yang
,
F.
,
Yang
,
R.
,
Lee
,
Y.-C.
,
George
,
S. M.
, and
Li
,
C.
,
2013
, “
Micromembrane-Enhanced Capillary Evaporation
,”
Appl. Phys. Lett.
,
103
(
15
), p.
151602
.
12.
Zhang
,
C.
,
Yu
,
F.
,
Li
,
X.
, and
Chen
,
Y.
,
2019
, “
Gravity–Capillary Evaporation Regimes in Microgrooves
,”
AIChE J.
,
65
(
3
), pp.
1119
1125
.
13.
Wang
,
X.
,
Fadda
,
D.
,
Godinez
,
J. C.
,
Lee
,
J.
, and
You
,
S. M.
,
2020
, “
Capillary Evaporation of Water From Aluminum High-Temperature Conductive Microporous Coating
,”
Int. J. Heat Mass Transfer
,
153
, p.
119660
.
14.
Demsky
,
S. M.
, and
Ma
,
H. B.
,
2010
, “
Thin Film Evaporation on a Curved Surface
,”
Microscale Thermophys. Eng.
,
8
(
3
), pp.
285
299
.
15.
Kobayashi
,
Y.
,
Ikeda
,
S.
, and
Iwasa
,
M.
,
2012
, “
Evaporative Heat Transfer at the Evaporative Section of a Grooved Heat Pipe
,”
AIAA J. Thermophys. Heat Transfer
,
10
(
1
), pp.
83
89
.
16.
Ma
,
H. B.
,
Cheng
,
A. P.
,
Borgmeyer
,
A. B.
, and
Wang
,
A. Y. X.
,
2008
, “
Fluid Flow and Heat Transfer in the Evaporating Thin Film Region
,”
Microfluid. Nanofluid.
,
4
(
3
), pp.
237
243
.
17.
Nazari
,
M.
,
Gorman
,
M.
, and
Ghasemi
,
H.
,
2019
, “
Unprecedented Capillary Evaporative Heat Flux in Nanochannels
,”
InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM
,
Las Vegas, NV
,
May 28–31
, pp.
329
334
.
18.
Li
,
W.
, and
Joshi
,
Y.
,
2020
, “
Capillary-Assisted Evaporation/Boiling in PDMS Microchannel Integrated With Wicking Microstructures
,”
Langmuir
,
36
(
41
), pp.
12143
12149
.
19.
Wen
,
R.
,
Xu
,
S.
,
Lee
,
Y.-C.
, and
Yang
,
R.
,
2018
, “
Capillary-Driven Liquid Film Boiling Heat Transfer on Hybrid Mesh Wicking Structures
,”
Nano Energy
,
51
(
9
), pp.
373
382
.
20.
Farokhnia
,
N.
,
Irajizad
,
P.
,
Sajadi
,
S. M.
, and
Ghasemi
,
H.
,
2016
, “
Rational Micro/Nanostructuring for Thin-Film Evaporation
,”
J. Phys. Chem. C
,
120
(
16
), pp.
8742
8750
.
21.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2014
, “
Review of Databases and Predictive Methods for Heat Transfer in Condensing and Boiling Mini/Micro-channel Flows
,”
Int. J. Heat Mass Transfer
,
77
, pp.
627
652
.
22.
Ma
,
H. B.
, and
Peterson
,
G. P.
,
1995
, “
Thermodynamic Analysis of the Influence of Electric Fields on Frost Formation
,”
AIAA J. Thermophys. Heat Transfer
,
9
(
3
), pp.
562
565
.
23.
Ma
,
H.
,
2015
,
Oscillating Heat Pipes
,
Springer
,
New York
.
24.
Cheng
,
P.
, and
Ma
,
H. B.
,
2007
, “
A Mathematical Model Predicting the Minimum Meniscus Radius in Mixed Particles
,”
ASME J. Heat Transfer
,
129
(
3
), pp.
391
394
.
You do not currently have access to this content.