Abstract

Combustion of raw biogas/hot air was performed in a porous radiant burner associated with a solar heater, and performance was predicted by a linear regression model using a machine learning algorithm. The test was conducted for the combustion of three different compositions of raw biogas mixtures having CO2 percentages of 25%, 30%, and 35% at the thermal load of 200–400 kW/m2. The hot air was supplied at an average temperature of 50 °C from the solar heater air supply system for proper combustion in lean mixture conditions. The porous radiant burner associated with a solar heater has offered radiation efficiency of 15.34–47.93%, NOX of 1–3.1 ppm, and CO of 25–87 ppm for three different compositions of raw biogas mixtures at the thermal load of 200–400 kW/m2 and equivalence ratio of 0.70–0.91. The increased radiation efficiency has indicated that the porous radiant burner can be an alternative for low-calorie fuel like raw biogas. Data analysis and processing have been performed using the machine learning algorithm, and the linear regression model has been developed using the python programming language. The error between predicted and experimentally calculated radiation efficiency is 1.67%.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Rusman
,
N. A. A.
, and
Dahari
,
M.
,
2016
, “
A Review on the Current Progress of Metal Hydrides Material for Solid-State Hydrogen Storage Applications
,”
Int. J. Hydrogen Energy
,
41
(
28
), pp.
12108
12126
.
2.
Sun
,
Y.
,
Shen
,
C.
,
Lai
,
Q.
,
Liu
,
W.
,
Wang
,
D. W.
, and
Aguey-Zinsou
,
K. F.
,
2018
, “
Tailoring Magnesium Based Materials for Hydrogen Storage Through Synthesis: Current State of the Art
,”
Energy Storage Mater.
,
10
, pp.
168
198
.
3.
Veziroğlu
,
T. N.
, and
Şahi
,
S.
,
2008
, “
21st Century’s Energy: Hydrogen Energy System
,”
Energy Convers. Manage.
,
49
(
7
), pp.
1820
1831
.
4.
Vijayakumar
,
P.
,
Ayyadurai
,
S.
,
Arunachalam
,
K. D.
,
Mishra
,
G.
,
Chen
,
W.-H.
,
Juan
,
J. C.
, and
Naqvi
,
S. R.
,
2022
, “
Current Technologies of Biochemical Conversion of Food Waste Into Biogas Production: A Review
,”
Fuel
,
323
, p.
124321
.
5.
Surendra
,
K. C.
,
Takara
,
D.
,
Hashimoto
,
A. G.
, and
Khanal
,
S. K.
,
2014
, “
Biogas as a Sustainable Energy Source for Developing Countries: Opportunities and Challenges
,”
Renew. Sustain. Energy Rev.
,
31
, pp.
846
859
.
6.
Dash
,
K.
, and
Samantaray
,
S.
,
2022
, “
A Review of the Effects of Burner Configuration and Operating Parameters on the Performance of Porous Radiant Burner
,”
AIP Conf. Proc.
,
2460
, p.
060003
.
7.
Mujeebu
,
M. A.
,
Abdullah
,
M. Z.
,
Bakar
,
M. A.
,
Mohamad
,
A. A.
,
Muhad
,
R. M. N.
, and
Abdullah
,
M. K.
,
2009
, “
Combustion in Porous Media and Its Applications—A Comprehensive Survey
,”
J. Environ. Manage.
,
90
(
8
), pp.
2287
2312
.
8.
Banerjee
,
A.
, and
Paul
,
D.
,
2021
, “
Developments and Applications of Porous Medium Combustion: A Recent Review
,”
Energy
,
221
, p.
119868
.
9.
Vahidhosseini
,
S. M.
,
Esfahani
,
J. A.
, and
Kim
,
K. C.
,
2022
, “
Experimental Study on the Radiative Heat Transfer in a Multi-Hole Porous Radiant Burner With Internal Combustion Regime
,”
Appl. Therm. Eng.
,
201
, p.
117732
.
10.
Weinberg
,
F. J.
,
1971
, “
Combustion Temperatures: The Future?
,”
Nature
,
233
(
5317
), pp.
239
241
.
11.
Mujeebu
,
M. A.
,
Abdullah
,
M. Z.
,
Bakar
,
M. A.
,
Mohamad
,
A. A.
, and
Abdullah
,
M. K.
,
2009
, “
Applications of Porous Media Combustion Technology—A Review
,”
Appl. Energy
,
86
(
9
), pp.
1365
1375
.
12.
Brenner
,
G.
,
Pickenäcker
,
K.
,
Pickenäcker
,
O.
,
Trimis
,
D.
,
Wawrzinek
,
K.
, and
Weber
,
T.
,
2000
, “
Numerical and Experimental Investigation of Matrix-Stabilized Methane/air Combustion in Porous Inert Media
,”
Combust. Flame
,
123
(
1–2
), pp.
201
213
.
13.
Gao
,
H.
,
Qu
,
Z.
,
Tao
,
W.
,
He
,
Y.
, and
Zhou
,
J.
,
2011
, “
Experimental Study of Biogas Combustion in a Two-Layer Packed Bed Burner
,”
Energy Fuels
,
25
(
7
), pp.
2887
2895
.
14.
Gao
,
H. B.
,
Qu
,
Z. G.
,
Tao
,
W. Q.
, and
He
,
Y. L.
,
2013
, “
Experimental Investigation of Methane/(Ar, N2, CO2)–Air Mixture Combustion in a Two-Layer Packed Bed Burner
,”
Exp. Therm. Fluid. Sci.
,
44
, pp.
599
606
.
15.
Keramiotis
,
C.
, and
Founti
,
M. A.
,
2013
, “
An Experimental Investigation of Stability and Operation of a Biogas Fueled Porous Burner
,”
Fuel
,
103
, pp.
278
284
.
16.
Keramiotis
,
C.
,
Katoufa
,
M.
,
Vourliotakis
,
G.
,
Hatziapostolou
,
A.
, and
Founti
,
M. A.
,
2015
, “
Experimental Investigation of a Radiant Porous Burner Performance With Simulated Natural Gas, Biogas and Synthesis Gas Fuel Blends
,”
Fuel
,
158
, pp.
835
842
.
17.
Devi
,
S.
,
Sahoo
,
N.
, and
Muthukumar
,
P.
,
2020
, “
Experimental Studies on Biogas Combustion in a Novel Double Layer Inert Porous Radiant Burner
,”
Renew. Energy
,
149
, pp.
1040
1052
.
18.
Habib
,
R.
,
Yadollahi
,
B.
,
Saeed
,
A.
,
Doranehgard
,
M. H.
,
Li
,
L. K. B.
, and
Karimi
,
N.
,
2021
, “
Unsteady Ultra-Lean Combustion of Methane and Biogas in a Porous Burner—An Experimental Study
,”
Appl. Therm. Eng.
,
182
, p.
116099
.
19.
Kaushik
,
L. K.
,
Mahalingam
,
A. K.
, and
Palanisamy
,
M.
,
2021
, “
Performance Analysis of a Biogas Operated Porous Radiant Burner for Domestic Cooking Application
,”
Environ. Sci. Pollut. Res.
,
28
(
10
), pp.
12168
12177
.
20.
Maznoy
,
A.
,
Pichugin
,
N.
,
Yakovlev
,
I.
,
Fursenko
,
R.
,
Petrov
,
D.
, and
Shy
,
S. S.
,
2021
, “
Fuel Interchangeability for Lean Premixed Combustion in Cylindrical Radiant Burner Operated in the Internal Combustion Mode
,”
Appl. Therm. Eng.
,
186
, p.
115997
.
21.
Dash
,
K.
, and
Samantaray
,
S.
,
2022
, “
Lean Premixed Combustion of Raw Biogas Interchangeability in a Porous Radiant Burner Operated in the Submerged Mode
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
9
), p.
091015
.
22.
Huang
,
Y.
,
Chao
,
C. Y. H.
, and
Cheng
,
P.
,
2002
, “
Effects of Preheating and Operation Conditions on Combustion in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
45
(
21
), pp.
4315
4324
.
23.
Wang
,
G.
,
Tang
,
P.
,
Li
,
Y.
,
Xu
,
J.
, and
Durst
,
F.
,
2019
, “
Flame Front Stability of low Calorific Fuel Gas Combustion With Preheated Air in a Porous Burner
,”
Energy
,
170
, pp.
1279
1288
.
24.
Liu
,
H.
,
Wu
,
D.
,
Xie
,
M.
,
Liu
,
H.
, and
Xu
,
Z.
,
2019
, “
Experimental and Numerical Study on the Lean Premixed Filtration Combustion of Propane/Air in Porous Medium
,”
Appl. Therm. Eng.
,
150
, pp.
445
455
.
25.
Liu
,
H.
,
Wu
,
D.
,
Xie
,
M.
,
Wang
,
S.
, and
Liu
,
L.
,
2019
, “
Experimental Study on the Pre-Evaporation Pulse Combustion of Liquid Fuel Within a Porous Medium Burner
,”
Exp. Therm. Fluid. Sci.
,
103
, pp.
286
294
.
26.
Bakry
,
A.
,
Al-Salaymeh
,
A.
,
Al-Muhtaseb
,
A. H.
,
Abu-Jrai
,
A.
, and
Trimis
,
D.
,
2011
, “
Adiabatic Premixed Combustion in a Gaseous Fuel Porous Inert Media Under High Pressure and Temperature: Novel Flame Stabilization Technique
,”
Fuel
,
90
(
2
), pp.
647
658
.
27.
Chen
,
Z.
,
Guo
,
S.
, and
Qin
,
C.
,
2020
, “
Experimental Research on Porous Media Combustion of SOFC Exhaust gas
,”
Case Stud. Therm. Eng.
,
22
, p.
100796
.
28.
Chen
,
X.
,
Li
,
J.
,
Zhao
,
D.
,
Rashid
,
M. T.
,
Zhou
,
X.
, and
Wang
,
N.
,
2021
, “
Effects of Porous Media on Partially Premixed Combustion and Heat Transfer in Meso-Scale Burners Fuelled With Ethanol
,”
Energy
,
224
, p.
120191
.
29.
Xu
,
K.
,
Liu
,
M.
, and
Zhao
,
P.
,
2011
, “
Stability of Lean Combustion in Mini-Scale Porous Media Combustor With Heat Recuperation
,”
Chem. Eng. Process. Process Intensif.
,
50
(
7
), pp.
608
613
.
30.
Dai
,
H.
,
Dai
,
H.
,
Yang
,
P.
,
Wang
,
Z.
,
Song
,
Z.
, and
Wang
,
X.
,
2021
, “
Combustion Characteristics of a Self-Preheating Burner With Gradually-Varied Porous Media
,”
Energy Sour., Part A: Recov., Utiliz., Environ. Eff.
, pp.
1
15
.
31.
Sethi
,
C. K.
,
Acharya
,
S. K.
,
Ghanem
,
S. R.
,
Behera
,
A.
, and
Patnaik
,
P. P.
,
2021
, “
Exergy, Energy and Economic Analysis of a V-Groove Assist Rotating Tray Type Solar Cabinet Dryer for Drying Potato Chips
,”
J. Stored Prod. Res.
,
93
, p.
101861
.
32.
Shamsundar
,
N.
,
Stein
,
E.
,
Rooz
,
E.
,
Bascaran
,
E.
, and
Lee
,
T. C.
,
1992
,
Design and Simulation of Latent Heat Storage Units (No. NREL/TP-253-4280)
,
National Renewable Energy Lab.(NREL)
,
Golden, CO; Houston University, TX
.
33.
Kline
,
S. J.
,
1963
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
34.
Ozbas
,
E. E.
,
Aksu
,
D.
,
Ongen
,
A.
,
Aydin
,
M. A.
, and
Ozcan
,
H. K.
,
2019
, “
Hydrogen Production via Biomass Gasification, and Modeling by Supervised Machine Learning Algorithms
,”
Int. J. Hydrogen Energy
,
44
(
32
), pp.
17260
17268
.
35.
McAllister
,
S.
,
Chen
,
J. Y.
,
Fernandez-Pello
,
A. C.
,
McAllister
,
S.
,
Chen
,
J.-Y.
, and
Fernandez-Pello
,
A. C.
,
2011
, “
Thermodynamics of Combustion
,”
Fundam. Combust. Process.
, pp.
15
47
.
You do not currently have access to this content.