Abstract

Flow boiling in microchannels can effectively address the challenges of high power density heat dissipation in electronic devices. However, the intricate bubble dynamics during the two-phase flow in microchannel necessitates understanding the characteristics of complex bubble hydrodynamics. In this study, we perform 2D numerical simulations of flow boiling using the Cahn-Hilliard phase-field method for a 200-µm width microchannel with single and multiple cavities in COMSOL Multiphysics (V5.3). The numerical model successfully captures bubble dynamics, encompassing vapor embryo generation, bubble growth, departure, coalescence, sliding, and stable vapor plug formation. The heat transfer mechanism inside the microchannel is dominated by bubble nucleation and thin-film evaporation. Elevated wall superheats in a single nucleation cavity, and increased mass flux facilitates higher bubble departure frequency and heat transfer performance. Temporal pressure fluctuations are observed inside microchannels in multiple cavities due to bubble coalescence, departure, and subsequent nucleation. Increasing the nucleating cavities from 2 to 5 within the microchannel while maintaining consistent cavity spacing of 100 µm has resulted in nearly 32% enhancement in heat transfer performance. This study offers valuable findings that can help improve the thermal management of electronic devices.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2007
, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transf. Eng.
,
28
(
4
), pp.
258
281
.
2.
Kumar
,
R.
,
Khan
,
M. K.
, and
Pathak
,
M.
,
2023
, “
Efficient Thermoelectric Cooler for Localized Cooling in Electronic Devices
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
8
), p.
081009
.
3.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.
4.
Priy
,
A.
,
Raj
,
S.
,
Pathak
,
M.
, and
Kaleem Khan
,
M.
,
2022
, “
A Hydrophobic Porous Substrate-Based Vapor Venting Technique for Mitigating Flow Boiling Instabilities in Microchannel Heat Sink
,”
Appl. Therm. Eng.
,
216
, p.
119138
.
5.
Ranjan
,
A.
,
Priy
,
A.
,
Ahmad
,
I.
,
Pathak
,
M.
, and
Khan
,
M. K.
,
2022
, “
Pool Boiling Heat Transfer Characteristics of a Stepped Microchannel Structured Heating Surface
,”
Int. J. Multiph. Flow
,
160
, p.
104351
.
6.
Ranjan
,
A.
,
Priy
,
A.
,
Ahmad
,
I.
,
Pathak
,
M.
,
Khan
,
M. K.
, and
Keshri
,
A. K.
,
2023
, “
Heat Transfer Characteristics of Pool Boiling With Scalable Plasma-Sprayed Aluminum Coatings
,”
Langmuir
,
39
(
18
), pp.
6337
6354
.
7.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
,
84
(
3
), pp.
207
213
.
8.
Wang
,
C.
, and
Dhir
,
V.
,
1992
, “
On the Gas Entrapment and Nucleation Site Density During Pool Boiling of Saturated Water
,”
115
(
8
).
9.
Kandlikar
,
S. G.
,
2006
, “
Nucleation Characteristics and Stability Considerations During Flow Boiling in Microchannels
,”
Exp. Therm. Fluid Sci.
,
30
(
5
), pp.
441
447
.
10.
Balasubramanian
,
P.
, and
Kandlikar
,
S. G.
,
2005
, “
Experimental Study of Flow Patterns, Pressure Drop, and Flow Instabilities in Parallel Rectangular Minichannels
,”
Heat Transf. Eng.
,
26
(
3
), pp.
20
27
.
11.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2009
, “
The Critical Role of Channel Cross-Sectional Area in Microchannel Flow Boiling Heat Transfer
,”
Int. J. Multiph. Flow
,
35
(
10
), pp.
904
913
.
12.
Edel
,
Z. J.
, and
Mukherjee
,
A.
,
2011
, “
Experimental Investigation of Vapor Bubble Growth During Flow Boiling in a Microchannel
,”
Int. J. Multiph. Flow
,
37
(
10
), pp.
1257
1265
.
13.
Lee
,
J. Y.
,
Kim
,
M. H.
,
Kaviany
,
M.
, and
Son
,
S. Y.
,
2011
, “
Bubble Nucleation in Microchannel Flow Boiling Using Single Artificial Cavity
,”
Int. J. Heat Mass Transf.
,
54
(
25–26
), pp.
5139
5148
.
14.
Tibiriçá
,
C. B.
, and
Ribatski
,
G.
,
2014
, “
Flow Patterns and Bubble Departure Fundamental Characteristics During Flow Boiling in Microscale Channels
,”
Exp. Therm. Fluid Sci.
,
59
, pp.
152
165
.
15.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2005
, “
Numerical Simulation of Growth of a Vapor Bubble During Flow Boiling of Water in a Microchannel
,”
Microfluid. Nanofluid.
,
1
(
2
), pp.
137
145
.
16.
Mukherjee
,
A.
,
Kandlikar
,
S. G.
, and
Edel
,
Z. J.
,
2011
, “
Numerical Study of Bubble Growth and Wall Heat Transfer During Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transf.
,
54
(
15–16
), pp.
3702
3718
.
17.
Dong
,
Z.
,
Xu
,
J.
,
Jiang
,
F.
, and
Liu
,
P.
,
2012
, “
Numerical Study of Vapor Bubble Effect on Flow and Heat Transfer in Microchannel
,”
Int. J. Therm. Sci.
,
54
, pp.
22
32
.
18.
Magnini
,
M.
,
Pulvirenti
,
B.
, and
Thome
,
J. R.
,
2013
, “
Numerical Investigation of Hydrodynamics and Heat Transfer of Elongated Bubbles During Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transf.
,
59
(
1
), pp.
451
471
.
19.
Magnini
,
M.
,
Pulvirenti
,
B.
, and
Thome
,
J. R.
,
2013
, “
Numerical Investigation of the Influence of Leading and Sequential Bubbles on Slug Flow Boiling Within a Microchannel
,”
Int. J. Therm. Sci.
,
71
, pp.
36
52
.
20.
Jafari
,
R.
, and
Okutucu-Özyurt
,
T.
,
2016
, “
Numerical Simulation of Flow Boiling From an Artificial Cavity in a Microchannel
,”
Int. J. Heat Mass Transf.
,
97
, pp.
270
278
.
21.
Luo
,
Y.
,
Zhang
,
J.
, and
Li
,
W.
,
2020
, “
A Comparative Numerical Study on Two-Phase Boiling Fluid Flow and Heat Transfer in the Microchannel Heat Sink With Different Manifold Arrangements
,”
Int. J. Heat Mass Transf.
,
156
, p.
119864
.
22.
Liu
,
Q.
,
Wang
,
W.
, and
Palm
,
B.
,
2017
, “
Numerical Study of the Interactions and Merge of Multiple Bubbles During Convective Boiling in Micro Channels
,”
Int. Commun. Heat Mass Transf.
,
80
, pp.
10
17
.
23.
Guo
,
K.
,
Li
,
H.
,
Feng
,
Y.
,
Zhao
,
J.
, and
Wang
,
T.
,
2019
, “
Numerical Investigation on Single Bubble and Multiple Bubbles Growth and Heat Transfer During Flow Boiling in a Microchannel Using the VOSET Method
,”
Microgravity Sci. Technol.
,
31
(
4
), pp.
381
393
.
24.
Lombaard
,
L.
,
Moghimi
,
M. A.
,
Valluri
,
P.
, and
Meyer
,
J. P.
,
2021
, “
Interaction Between Multiple Bubbles in Microchannel Flow Boiling and the Effects on Heat Transfer
,”
Int. Commun. Heat Mass Transf.
,
129
, p.
105703
.
25.
Bhuvankar
,
P.
, and
Dabiri
,
S.
,
2020
, “
Numerical Simulation of Sliding Bubbles in Saturated Flow Boiling
,”
Chem. Eng. Sci.
,
228
, p.
115919
.
26.
Iskhakova
,
A.
,
Kondo
,
Y.
,
Tanimoto
,
K.
,
Dinh
,
N. T.
, and
Bolotnov
,
I. A.
,
2023
, “
Interface Capturing Flow Boiling Simulations in a Compact Heat Exchanger
,”
ASME J. Heat Mass Transf.
,
145
(
4
), p.
041605
.
27.
Pan
,
Z.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2016
, “
A Saturated-Interface-Volume Phase Change Model for Simulating Flow Boiling
,”
Int. J. Heat Mass Transf.
,
93
, pp.
945
956
.
28.
Xie
,
W.
,
Lv
,
X.
,
Liu
,
D.
,
Li
,
L.
, and
Yao
,
W.
,
2020
, “
Numerical Investigation of Flow Boiling in Manifold Microchannel-Based Heat Exchangers
,”
Int. J. Heat Mass Transf.
,
163
, p.
120493
.
29.
Missaoui
,
S.
,
Driss
,
Z.
,
Ben Slama
,
R.
, and
Chaouachi
,
B.
,
2022
, “
Experimental and Numerical Analysis of a Helical Coil Heat Exchanger for Domestic Refrigerator and Water Heating
,”
Int. J. Refrig.
,
133
, pp.
276
288
.
30.
Yi
,
T. H.
,
Lei
,
Z. S.
, and
Zhao
,
J. F.
,
2019
, “
Numerical Investigation of Bubble Dynamics and Heat Transfer in Subcooling Pool Boiling Under Low Gravity
,”
Int. J. Heat Mass Transf.
,
132
, pp.
1176
1186
.
31.
Plesset
,
M. S.
, and
Zwick
,
S. A.
,
1954
, “
The Growth of Vapor Bubbles in Superheated Liquids
,”
J. Appl. Phys.
,
25
(
4
), pp.
493
500
.
32.
Qiu
,
D. M.
,
Dhir
,
V. K.
,
Chao
,
D.
,
Hasan
,
M. M.
,
Neumann
,
E.
,
Yee
,
G.
, and
Birchenough
,
A.
,
2002
, “
Single-Bubble Dynamics During Pool Boiling Under Low Gravity Conditions
,”
J. Thermophys. Heat Transf.
,
16
(
3
), pp.
336
345
.
33.
Singh
,
S.
, and
Dhir
,
V. K.
,
2000
, “Effect of Gravity, Wall Superheat, and Liquid Subcooling on Bubble Dynamics During Nucleate Boiling,”
Microgravity Fluid Physics & Heat Transfer
,
Begell House
, pp.
106
113
.
34.
Konishi
,
C.
, and
Mudawar
,
I.
,
2015
, “
Review of Flow Boiling and Critical Heat Flux in Microgravity
,”
Int. J. Heat Mass Transf.
,
80
, pp.
469
493
.
35.
Robinson
,
F. L.
, and
Bar-Cohen
,
A.
,
2019
, “
Orientation Effects in Two-Phase Microgap Flow
,”
ASME J. Electron. Packag. Trans.
,
141
(
3
).
36.
Sharma
,
D.
,
Ghosh
,
D. P.
,
Kumar
,
A.
,
Saha
,
S. K.
, and
Raj
,
R.
,
2019
, “
Thermohydraulic Characterization of Flow Boiling in a Nanostructured Microchannel Heat Sink With Vapor Venting Manifold
,”
Int. J. Heat Mass Transf.
,
130
, pp.
1249
1259
.
37.
Raj
,
S.
,
Pathak
,
M.
, and
Khan
,
M. K.
,
2020
, “
Flow Boiling Characteristics in Different Configurations of Stepped Microchannels
,”
Exp. Therm. Fluid Sci.
,
119
, p.
110217
.
38.
Ghosh
,
D. P.
,
Sharma
,
D.
,
Kumar
,
A.
,
Saha
,
S. K.
, and
Raj
,
R.
,
2020
, “
An Ingenious Fluidic Capacitor for Complete Suppression of Thermal Fluctuations in Two-Phase Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transf.
,
110
(
November 2019
), p.
104347
.
39.
Prajapati
,
Y. K.
,
Pathak
,
M.
, and
Khan
,
M. K.
,
2015
, “
A Comparative Study of Flow Boiling Heat Transfer in Three Different Configurations of Microchannels
,”
Int. J. Heat Mass Transf.
,
85
, pp.
711
722
.
40.
Prajapati
,
Y. K.
,
Pathak
,
M.
, and
Khan
,
M. K.
,
2017
, “
Bubble Dynamics and Flow Boiling Characteristics in Three Different Microchannel Configurations
,”
Int. J. Therm. Sci.
,
112
, pp.
371
382
.
You do not currently have access to this content.