Abstract

The coupled pore-scale and Darcy-scale numerical simulations are used in this work to investigate heat transport and hydrodynamic characteristics within a porous channel constructed by using a primitive lattice based on triply-periodic-minimal-surface. The pore-scale simulation is used in void subdomain, whereas the microporous-solid subdomain is simulated by Darcy-scale simulation for a range of mass transfer rates 4×107 to 2×103 kg/s (corresponding Reynolds numbers 0.1<Re<500). The liquid-water (Pr=7) is used as the working fluid. The Darcy number and inertial drag coefficient are calculated using the pressure drop in the channel along with the heat transfer coefficient (Nusselt number) on both internal and external walls. The quantifiable deviation from local thermal equilibrium (LTE) is also established. The results reveal two distinct, namely passive and active regimes, depending upon the permeability of the microporous-solid subdomain. It is found that the Nusselt number is almost constant for permeability values Kμ<1011m2(passive regime). However, significant variation is observed in the Nu for higher value of permeability Kμ1011m2(active regime). The Darcy number and effective Nusselt number are found to be increasing, while the inertial drag coefficient and deviation from LTE are found to be decreasing with the permeability in the active regime only.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Kaviany
,
M.
,
2012
,
Principles of Heat Transfer in Porous Media
,
Springer Science & Business Media
,
New York
.
2.
Das
,
M. K.
,
Mukherjee
,
P. P.
, and
Muralidhar
,
K.
,
2018
,
Modeling Transport Phenomena in Porous Media With Applications
, Vol.
241
,
Springer International Publishing
,
Germany
.
3.
Nield
,
D. A.
, and
Simmons
,
C. T.
,
2019
, “
A Brief Introduction to Convection in Porous Media
,”
Transp. Porous Media
,
130
(
1
), pp.
237
250
.
4.
Nield
,
D. A.
, and
Bejan
,
A.
,
2006
,
Convection in Porous Media
, Vol.
3
,
Springer
,
New York
.
5.
Fu
,
J.
,
Thomas
,
H. R.
, and
Li
,
C.
,
2021
, “
Tortuosity of Porous Media: Image Analysis and Physical Simulation
,”
Earth-Sci. Rev.
,
212
, p.
103439
.
6.
Hlushkou
,
D.
,
Piatrusha
,
S.
, and
Tallarek
,
U.
,
2017
, “
Impact of Diffusion on Transverse Dispersion in Two-Dimensional Ordered and Random Porous Media
,”
Phys. Rev. E
,
95
(
6
), p.
063108
.
7.
Delgado
,
J. M. P. Q.
,
2007
, “
Longitudinal and Transverse Dispersion in Porous Media
,”
Chem. Eng. Res. Des.
,
85
(
9
), pp.
1245
1252
.
8.
Rashidi
,
S.
,
Esfahani
,
J. A.
, and
Rashidi
,
A.
,
2017
, “
A Review on the Applications of Porous Materials in Solar Energy Systems
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
1198
1210
.
9.
Rashidi
,
S.
,
Kashefi
,
M. H.
,
Kim
,
K. C.
, and
Samimi-Abianeh
,
O.
,
2019
, “
Potentials of Porous Materials for Energy Management in Heat Exchangers–A Comprehensive Review
,”
Appl. Energy
,
243
, pp.
206
232
.
10.
Chen
,
Y.
,
Wang
,
N.
,
Ola
,
O.
,
Xia
,
Y.
, and
Zhu
,
Y.
,
2021
, “
Porous Ceramics: Light in Weight But Heavy in Energy and Environment Technologies
,”
Mater. Sci. Eng.: R: Rep.
,
143
, p.
100589
.
11.
Tikadar
,
A.
,
Oudah
,
S. K.
,
Paul
,
T. C.
,
Salman
,
A. S.
,
Morshed
,
A. K. M. M.
, and
Khan
,
J. A.
,
2019
, “
Parametric Study on Thermal and Hydraulic Characteristics of Inter-Connected Parallel and Counter Flow Mini-Channel Heat Sink
,”
Appl. Therm. Eng.
,
153
, pp.
15
28
.
12.
Khaled
,
A. R.
, and
Vafai
,
K.
,
2005
, “
Heat Transfer Enhancement Through Control of Thermal Dispersion Effects
,”
Int. J. Heat Mass Transfer
,
48
(
11
), pp.
2172
2185
.
13.
Chikh
,
S.
,
Boumedien
,
A.
,
Bouhadef
,
K.
, and
Lauriat
,
G.
,
1998
, “
Analysis of Fluid Flow and Heat Transfer in a Channel With Intermittent Heated Porous Blocks
,”
Heat Mass Transfer
,
33
(
5
), pp.
405
413
.
14.
Vafai
,
K.
, and
Kim
,
S. J.
,
1990
, “
Analysis of Surface Enhancement by a Porous Substrate
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
3
), pp.
700
706
.
15.
Hadim
,
H. A.
, and
Bethancourt
,
A.
,
1995
, “
Numerical Study of Forced Convection in a Partially Porous Channel With Discrete Heat Sources
,”
ASME J. Electron. Packag.
,
117
(
1
), pp.
46
51
.
16.
Chuan
,
L.
,
Wang
,
X. D.
,
Wang
,
T. H.
, and
Yan
,
W. M.
,
2015
, “
Fluid Flow and Heat Transfer in Microchannel Heat Sink Based on Porous Fin Design Concept
,”
Int. Commun. Heat Mass Transfer
,
65
, pp.
52
57
.
17.
Hadim
,
H.
, and
Vafai
,
K.
,
2018
, “Overview of Current Computational Studies of Heat Transfer in Porous Media and Their Applications–Forced Convection and Multiphase Heat Transfer,”
Advances in Numerical Heat Transfer
,
W. J.
Minkowycz
and
E. M.
Sparrow
, eds., Vol.
2
,
CRC Press
,
Boca Raton, FL
, pp.
291
329
.
18.
Hadim
,
A.
,
1994
, “
Forced Convection in a Porous Channel With Localized Heat Sources
,”
ASME J. Heat Transfer-Trans. ASME
,
116
(
2
), pp.
465
472
.
19.
Ahmed
,
H. E.
,
Fadhil
,
O. T.
, and
Salih
,
W. A.
,
2019
, “
Heat Transfer and Fluid Flow Characteristics of Tubular Channel Partially Filled With Grooved Metal Foams
,”
Int. Commun. Heat Mass Transfer
,
108
, p.
104336
.
20.
Mohamad
,
A. A.
,
2003
, “
Heat Transfer Enhancements in Heat Exchangers Fitted With Porous Media—Part I: Constant Wall Temperature
,”
Int. J. Therm. Sci.
,
42
(
4
), pp.
385
395
.
21.
Rathore
,
S. S.
,
Mehta
,
B.
,
Kumar
,
P.
, and
Asfer
,
M.
,
2022
. “
Effect of Porous Plug Shape and Permeability on Convective Heat Transfer Characteristics of Flow Through a Mini Channel
,”
Biennial International Conference on Future Learning Aspects of Mechanical Engineering
,
Noida, India
,
Aug. 3–5
,
Springer Nature
,
Singapore
, pp.
9
37
.
22.
Li
,
F.
,
Ma
,
Q.
,
Xin
,
G.
,
Zhang
,
J.
, and
Wang
,
X.
,
2020
, “
Heat Transfer and Flow Characteristics of Microchannels With Solid and Porous Ribs
,”
Appl. Therm. Eng.
,
178
, p.
115639
.
23.
Whitaker
,
S.
,
2013
,
The Method of Volume Averaging
, Vol.
13
,
Springer Science & Business Media
,
The Netherlands
.
24.
Koh
,
J. C. Y.
, and
Stevens
,
R. L.
,
1975
, “
Enhancement of Cooling Effectiveness by Porous Materials in Coolant Passage
,”
ASME J. Heat Transfer-Trans. ASME
,
97
(
2
), pp.
309
311
.
25.
Vafai
,
K.
, and
Tien
,
C. L.
,
1981
, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
195
203
.
26.
Vernerey
,
F. J.
,
2012
, “
The Effective Permeability of Cracks and Interfaces in Porous Media
,”
Transp. Porous Media
,
93
(
3
), pp.
815
829
.
27.
Hamidi
,
S.
,
Heinze
,
T.
,
Galvan
,
B.
, and
Miller
,
S.
,
2019
, “
Critical Review of the Local Thermal Equilibrium Assumption in Heterogeneous Porous Media: Dependence On Permeability and Porosity Contrasts
,”
Appl. Therm. Eng.
,
147
, pp.
962
971
.
28.
Blunt
,
M. J.
,
Bijeljic
,
B.
,
Dong
,
H.
,
Gharbi
,
O.
,
Iglauer
,
S.
,
Mostaghimi
,
P.
,
Paluszny
,
A.
, and
Pentland
,
C.
,
2013
, “
Pore-Scale Imaging and Modelling
,”
Adv. Water Resour.
,
51
, pp.
197
216
.
29.
Chen
,
L.
,
He
,
A.
,
Zhao
,
J.
,
Kang
,
Q.
,
Li
,
Z. Y.
,
Carmeliet
,
J.
,
Shikazono
,
N.
, and
Tao
,
W. Q.
,
2022
, “
Pore-Scale Modeling of Complex Transport Phenomena in Porous Media
,”
Prog. Energy Combust. Sci.
,
88
, p.
100968
.
30.
Catchpole-Smith
,
S.
,
Sélo
,
R. R. J.
,
Davis
,
A. W.
,
Ashcroft
,
I. A.
,
Tuck
,
C. J.
, and
Clare
,
A. J. A. M.
,
2019
, “
Thermal Conductivity of TPMS Lattice Structures Manufactured Via Laser Powder Bed Fusion
,”
Addit. Manuf.
,
30
, p.
100846
.
31.
Ali
,
D.
,
Ozalp
,
M.
,
Blanquer
,
S. B.
, and
Onel
,
S.
,
2020
, “
Permeability and Fluid Flow-Induced Wall Shear Stress in Bone Scaffolds With TPMS and Lattice Architectures: A CFD Analysis
,”
Eur. J. Mech.-B/Fluids
,
79
, pp.
376
385
.
32.
Lee
,
J. W.
,
Oh
,
S. H.
,
Jeon
,
E.
,
Kim
,
J.
, and
Park
,
K.
,
2022
, “
Functional Gradation of the Morphological Properties of TPMS Channel for Enhanced Flow Performance
,”
Mater. Des.
,
224
, p.
111413
.
33.
Rathore
,
S. S.
,
Mehta
,
B.
,
Kumar
,
P.
, and
Asfer
,
M.
,
2024
, “
Flow Characterization in Triply-Periodic-Minimal-Surface (TPMS)-Based Porous Geometries: Part 2-Heat Transfer
,”
Transp. Porous Media
,
151
(
1
), pp.
141
169
.
34.
Wang
,
J.
,
Chen
,
K.
,
Zeng
,
M.
,
Ma
,
T.
,
Wang
,
Q.
, and
Cheng
,
Z.
,
2023
, “
Investigation on Flow and Heat Transfer in Various Channels Based on Triply Periodic Minimal Surfaces (TPMS)
,”
Energy Convers. Manage.
,
283
, p.
116955
.
35.
Flórez Mera
,
J. P.
,
Chiamulera
,
M. E.
, and
Mantelli
,
M. B.
,
2017
, “
Permeability Model of Sintered Porous Media: Analysis and Experiments
,”
Heat Mass Transfer
,
53
(
11
), pp.
3277
3285
.
36.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
,
1977
, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer-Trans. ASME
,
99
(
2
), pp.
180
186
.
37.
Rathore
,
S. S.
,
Mehta
,
B.
,
Kumar
,
P.
, and
Asfer
,
M.
,
2023
, “
Flow Characterization in Triply Periodic Minimal Surface (TPMS)-Based Porous Geometries: Part 1-Hydrodynamics
,”
Transp. Porous Media
,
146
(
3
), pp.
669
701
.
38.
Zhang
,
X.
, and
Liu
,
W.
,
2008
, “
New Criterion for Local Thermal Equilibrium in Porous Media
,”
J. Thermophys. Heat Transfer
,
22
(
4
), pp.
649
653
.
39.
Al-Ketan
,
O.
, and
Abu Al-Rub
,
R. K.
,
2021
, “
MSLattice: A Free Software for Generating Uniform and Graded Lattices Based on Triply Periodic Minimal Surfaces
,”
Mater. Des. Process. Commun.
,
3
(
6
), p.
e205
.
40.
ANSYS
,
I.
,
2018
, “
ANSYS Fluent Tutorial Guide R18
,”
ANSYS Fluent Tutor. Guid.
,
18
, pp.
724
746
.
41.
Alazmi
,
B.
, and
Vafai
,
K.
,
2000
, “
Analysis of Variants Within the Porous Media Transport Models
,”
ASME J. Heat Transfer-Trans. ASME
,
122
(
2
), pp.
303
326
.
42.
Vafai
,
K.
, and
Sozen
,
M.
,
1990
, “
Analysis of Energy and Momentum Transport for Fluid Flow Through a Porous Bed
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
3
), pp.
690
699
.
43.
Amiri
,
A.
, and
Vafai
,
K.
,
1994
, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
,
37
(
6
), pp.
939
954
.
44.
Alomar
,
O. R.
,
2019
, “
Analysis of Variable Porosity, Thermal Dispersion, and Local Thermal Non-Equilibrium on Two-Phase Flow Inside Porous Media
,”
Appl. Therm. Eng.
,
154
, pp.
263
283
.
You do not currently have access to this content.