Abstract

In Phase Change Material (PCM) simulations, buoyancy force is used to capture the melting contour. However, for the sake of simplicity, most of the PCM-based Metal Hydride (MH) simulations have ignored the influence of buoyancy in PCM which is crucial in analyzing the heat flow within PCM. This study incorporates the buoyancy term in mathematical models to capture the contour of a melted PCM and also its heat transfer capacity during the hydrogen absorption process. A PCM model with buoyancy force is validated against the experimental values and applied to the MH-PCM models. Incorporating the buoyancy force improves the heat transfer rate in the PCM during melting which benefits in better heat removal from the MH bed. Two designs of MH-PCM models having PCM placed in ring-type and tube-type configurations are discussed. Further, the design optimization in ring-type models was done by changing the PCM-MH volume and sandwiching ratios.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Wallace
,
J. S.
, and
Ward
,
C. A.
,
1983
, “
Hydrogen as a Fuel
,”
Int. J. Hydrogen Energy
,
8
(
4
), pp.
255
268
.
2.
Dawood
,
F.
,
Anda
,
M.
, and
Shafiullah
,
G. M.
,
2020
, “
Hydrogen Production for Energy: An Overview
,”
Int. J. Hydrogen Energy
,
45
(
7
), pp.
3847
3869
.
3.
Rivard
,
E.
,
Trudeau
,
M.
, and
Zaghib
,
K.
,
2019
, “
Hydrogen Storage for Mobility: A Review
,”
Materials
,
12
(
12
), p.
1973
.
4.
Zhang
,
J.
,
Fisher
,
T. S.
,
Ramachandran
,
P. V.
,
Gore
,
J. P.
, and
Mudawar
,
I.
,
2005
, “
A Review of Heat Transfer Issues in Hydrogen Storage Technologies
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
12
), pp.
1391
1399
.
5.
David
,
E.
,
2005
, “
An Overview of Advanced Materials for Hydrogen Storage
,”
J. Mater. Process. Technol.
,
162–163
, pp.
169
177
.
6.
Jemni
,
A.
, and
Nasrallah
,
S. B.
,
1995
, “
Study of Two-Dimensional Heat and Mass Transfer During Absorption in a Metal-Hydrogen Reactor
,”
Int. J. Hydrogen Energy
,
20
(
1
), pp.
43
52
.
7.
Jemni
,
A.
,
Nasrallah
,
S. B.
, and
Lamloumi
,
J.
,
1999
, “
Experimental and Theoretical Study of a Metal–Hydrogen Reactor
,”
Int. J. Hydrogen Energy
,
24
(
7
), pp.
631
644
.
8.
Kaplan
,
Y.
,
2009
, “
Effect of Design Parameters on Enhancement of Hydrogen Charging in Metal Hydride Reactors
,”
Int. J. Hydrogen Energy
,
34
(
5
), pp.
2288
2294
.
9.
Askri
,
F.
,
Ben
,
S. M.
,
Jemni
,
A.
, and
Nasrallah
,
S. B.
,
2009
, “
Optimization of Hydrogen Storage in Metal-Hydride Tanks
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
897
905
.
10.
Li
,
H.
,
Wang
,
Y.
,
He
,
C.
,
Chen
,
X.
,
Zhang
,
Q.
,
Zheng
,
L.
,
Yang
,
F.
, et al
,
2015
, “
Design and Performance Simulation of the Spiral Mini-Channel Reactor During H2 Absorption
,”
Int. J. Hydrogen Energy
,
40
(
39
), pp.
13490
13505
.
11.
Mellouli
,
S.
,
Askri
,
F.
,
Dhaou
,
H.
,
Jemni
,
A.
, and
Nasrallah
,
S. B.
,
2007
, “
A Novel Design of a Heat Exchanger for a Metal-Hydrogen Reactor
,”
Int. J. Hydrogen Energy
,
32
(
15
), pp.
3501
3507
.
12.
Garrison
,
S. L.
,
Hardy
,
B. J.
,
Gorbounov
,
M. B.
,
Tamburello
,
D. A.
,
Corgnale
,
C.
,
Vanhassel
,
B. A.
,
Mosher
,
D. A.
, et al
,
2012
, “
Optimization of Internal Heat Exchangers for Hydrogen Storage Tanks Utilizing Metal Hydrides
,”
Int. J. Hydrogen Energy
,
37
(
3
), pp.
2850
2861
.
13.
Singh
,
A.
,
Maiya
,
M. P.
, and
Murthy
,
S. S.
,
2015
, “
Effects of Heat Exchanger Design on the Performance of a Solid State Hydrogen Storage Device
,”
Int. J. Hydrogen Energy
,
40
(
31
), pp.
9733
9746
.
14.
Souahlia
,
A.
,
Dhaou
,
H.
,
Askri
,
F.
,
Mellouli
,
S.
,
Jemni
,
A.
, and
Nasrallah
,
S. B.
,
2011
, “
Experimental Study and Characterization of Metal Hydride Containers
,”
Int. J. Hydrogen Energy
,
36
(
8
), pp.
4952
4957
.
15.
Wu
,
Z.
,
Yang
,
F.
,
Zhu
,
L.
,
Feng
,
P.
,
Zhang
,
Z.
, and
Wang
,
Y.
,
2016
, “
Improvement in Hydrogen Desorption Performances of Magnesium Based Metal Hydride Reactor by Incorporating Helical Coil Heat Exchanger
,”
Int. J. Hydrogen Energy
,
41
(
36
), pp.
16108
16121
.
16.
Wang
,
H.
,
Prasad
,
A. K.
, and
Advani
,
S. G.
,
2012
, “
Hydrogen Storage System Based on Hydride Materials Incorporating a Helical-Coil Heat Exchanger
,”
Int. J. Hydrogen Energy
,
37
(
19
), pp.
14292
14299
.
17.
Bhogilla
,
S. S.
,
2017
, “
Design of a AB2-Metal Hydride Cylindrical Tank for Renewable Energy Storage
,”
J. Energy Storage
,
14
, pp.
203
210
.
18.
Lewis
,
S. D.
, and
Chippar
,
P.
,
2021
, “A Numerical Study of Metal Hydride Reactor Embedded With Helical Coil Heat Exchanger,”
Mathematical Fluid Mechanics: Advances in Convective Instabilities and Incompressible Fluid Flow
,
B.
Mahanthesh
, ed.,
De Gruyter Publishers
,
Berlin, Germany
, pp.
201
222
.
19.
Singh
,
A.
,
Maiya
,
M. P.
, and
Murthy
,
S. S.
,
2017
, “
Experiments on Solid State Hydrogen Storage Device With a Finned Tube Heat Exchanger
,”
Int. J. Hydrogen Energy
,
42
(
22
), pp.
15226
15235
.
20.
Lewis
,
S. D.
,
Chippar
,
P.
, and
Deb
,
A.
,
2020
, “
Numerical Study of Hydrogen Absorption in a Metal Hydride Tank Embedded With Multiple U-Shaped Cooling Channel
,”
Proc. AIP Conf.
,
2236
(
1
), p.
030004
.
21.
Souahlia
,
A.
,
Dhaou
,
H.
,
Mellouli
,
S.
,
Askri
,
F.
,
Jemni
,
A.
, and
Nasrallah
,
S. B.
,
2014
, “
Experimental Study of Metal Hydride-Based Hydrogen Storage Tank at Constant Supply Pressure
,”
Int. J. Hydrogen Energy
,
39
(
14
), pp.
7365
7372
.
22.
Dhaou
,
H.
,
Souahlia
,
A.
,
Mellouli
,
S.
,
Askri
,
F.
,
Jemni
,
A.
, and
Nasrallah
,
S. B.
,
2010
, “
Experimental Study of a Metal Hydride Vessel Based on a Finned Spiral Heat Exchanger
,”
Int. J. Hydrogen Energy
,
35
(
4
), pp.
1674
1680
.
23.
Linder
,
M.
,
Mertz
,
R.
, and
Laurien
,
E.
,
2010
, “
Experimental Analysis of Fast Metal Hydride Reaction Bed Dynamics
,”
Int. J. Hydrogen Energy
,
35
(
16
), pp.
8755
8761
.
24.
Ma
,
J.
,
Wang
,
Y.
,
Shi
,
S.
,
Yang
,
F.
,
Bao
,
Z.
, and
Zhang
,
Z.
,
2014
, “
Optimization of Heat Transfer Device and Analysis of Heat & Mass Transfer on the Finned Multi-tubular Metal Hydride Tank
,”
Int. J. Hydrogen Energy
,
39
(
25
), pp.
13583
13595
.
25.
Kumar
,
A.
,
Raju
,
N. N.
,
Muthukumar
,
P.
, and
Selvan
,
P. V.
,
2019
, “
Experimental Studies on Industrial Scale Metal Hydride Based Hydrogen Storage System With Embedded Cooling Tubes
,”
Int. J. Hydrogen Energy
,
4
(
26
), pp.
13549
13560
.
26.
Lewis
,
S. D.
, and
Chippar
,
P.
,
2023
, “A Novel Design of Internal Heat Exchangers in Metal Hydride System for Hydrogen Storage,”
Advances in Manufacturing, Automation, Design and Energy Technologies
,
N. M.
Sivaram
,
K.
Sankaranarayanasamy
, and
J. P.
Davim
, eds.,
Lecture Notes in Mechanical Engineering, Springer Publishers
,
Singapore
, pp.
661
669
.
27.
Lewis
,
S. D.
, and
Chippar
,
P.
,
2020
, “
Numerical Investigation of Hydrogen Absorption in a Metal Hydride Reactor With Embedded Embossed Plate Heat Exchanger
,”
Energy
,
194
, p.
116942
.
28.
Mellouli
,
S.
,
Dhaou
,
H.
,
Askri
,
F.
,
Jemni
,
A.
, and
Nasrallah
,
S. B.
,
2009
, “
Hydrogen Storage in Metal Hydride Tanks Equipped With Metal Foam Heat Exchanger
,”
Int. J. Hydrogen Energy
,
34
(
23
), pp.
9393
9401
.
29.
Ferekh
,
S.
,
Kyoung
,
S.
, and
Ju
,
H.
,
2016
, “
Hydrogen Discharging and Thermal Behaviors of ZrCo Based Hydrogen Storage Beds Equipped With Heat-Fins or Metal-Foam
,”
Fusion Eng. Des.
,
109–111
, pp.
884
889
.
30.
Kang
,
H.
,
Chung
,
D.
,
Oh
,
Y. H.
,
Chang
,
M. H.
, and
Yun
,
S.
,
2016
, “
Experimental Comparison on Heat Transfer-Enhancing Component of Metal Hydride Bed
,”
Fusion Eng. Des.
,
109–111
, pp.
965
969
.
31.
Laurencelle
,
F.
, and
Goyette
,
J.
,
2007
, “
Simulation of Heat Transfer in a Metal Hydride Reactor With Aluminium Foam
,”
Int. J. Hydrogen Energy
,
32
(
14
), pp.
2957
2964
.
32.
Chippar
,
P.
,
Lewis
,
S. D.
,
Rai
,
S.
, and
Sircar
,
A.
,
2018
, “
Numerical Investigation of Hydrogen Absorption in a Stackable Metal Hydride Reactor Utilizing Compartmentalization
,”
Int. J. Hydrogen Energy
,
43
(
16
), pp.
8007
8017
.
33.
Demirbas
,
M. F.
,
2006
, “
Thermal Energy Storage and Phase Change Materials: An Overview
”,
Energy Sources B: Econ. Plan. Policy
,
1
, pp.
89
95
.
34.
Cabeza
,
L. F.
,
2012
, “
Thermal Energy Storage
,”
Compr. Renew. Energy
,
3
, pp.
211
253
.
35.
Samara
,
F.
,
Groulx
,
D.
, and
Biwole
,
P. H.
,
2012
, “
Natural Convection Driven Melting of Phase Change Material: Comparison of Two Methods
,”
COMSOL Conference
,
Canada
,
Oct. 2012
, pp.
1
8
.
36.
ANSYS FLUENT 12.0 Theory Guide—17
,
2009
, Solidification and Melting, Inc. Accessed December 22, 2021.
37.
Kamkari
,
B.
, and
Amlashi
,
H. J.
,
2017
, “
Numerical Simulation and Experimental Verification of Constrained Melting of Phase Change Material in Inclined Rectangular Enclosures
,”
Int. Commun. Heat Mass Transfer
,
88
, pp.
211
219
.
38.
Garrier
,
S.
,
Delhomme
,
B.
,
Rango
,
P. D.
,
Marty
,
P.
,
Fruchart
,
D.
, and
Miraglia
,
S.
,
2013
, “
A New MgH2 Tank Concept Using a Phase-Change Material to Store the Heat of Reaction
,”
Int. J. Hydrogen Energy
,
38
(
23
), pp.
9766
9771
.
39.
Mâad
,
H. M.
,
Miled
,
A.
,
Askri
,
F.
, and
Nasrallah
,
S. B.
,
2016
, “
Numerical Simulation of Absorption-Desorption Cyclic Processes for Metal-Hydrogen Reactor With Heat Recovery Using Phase-Change Material
,”
Appl. Therm. Eng.
,
96
, pp.
267
276
.
40.
Mellouli
,
S.
,
Abhilash
,
E.
,
Askri
,
F.
, and
Nasrallah
,
S. B.
,
2016
, “
Integration of Thermal Energy Storage Unit in a Metal Hydride Hydrogen Storage Tank
,”
Appl. Therm. Eng.
,
102
, pp.
1185
1196
.
41.
Mellouli
,
S.
,
Askri
,
F.
,
Abhilash
,
E.
, and
Nasrallah
,
S. B.
,
2017
, “
Impact of Using a Heat Transfer Fluid Pipe in a Metal Hydride-Phase Change Material Tank
,”
Appl. Therm. Eng.
,
113
, pp.
554
565
.
42.
Tong
,
L.
,
Xiao
,
J.
,
Bénard
,
P.
, and
Chahine
,
R.
,
2019
, “
Thermal Management of Metal Hydride Hydrogen Storage Reservoir Using Phase Change Materials
,”
Int. J. Hydrogen Energy
,
44
(
38
), pp.
21055
21066
.
43.
Lewis
,
S. D.
, and
Chippar
,
P.
,
2021
, “
Analysis of Heat and Mass Transfer During Charging and Discharging in a Metal Hydride—Phase Change Material Reactor
,”
J. Energy Storage
,
33
, p.
102108
.
44.
Alqahtani
,
T.
,
Mellouli
,
S.
,
Bamasag
,
A.
,
Askri
,
F.
, and
Phelan
,
P. E.
,
2020
, “
Thermal Performance Analysis of a Metal Hydride Reactor Encircled by a Phase Change Material Sandwich Bed
,”
Int. J. Hydrogen Energy
,
45
(
43
), pp.
23076
23092
.
45.
Farid
,
M. M.
,
Kim
,
Y.
, and
Kansawa
,
A.
,
1990
, “
Thermal Performance of a Heat Storage Module Using PCM’s With Different Melting Temperature: Experimental
,”
ASME J. Sol. Energy Eng.
,
112
(
2
), pp.
125
131
.
46.
Farid
,
M. M.
, and
Kanzawa
,
A.
,
1989
, “
Thermal Performance of a Heat Storage Module Using Pcm’s With Different Melting Temperatures: Mathematical Modeling
,”
ASME J. Sol. Energy Eng.
,
111
(
2
), pp.
152
157
.
47.
Alqahtani
,
T.
,
Bamasag
,
A.
,
Mellouli
,
S.
,
Askri
,
F.
, and
Phelan
,
P. E.
,
2020
, “
Cyclic Behaviors of a Novel Design of a Metal Hydride Reactor Encircled by Cascaded Phase Change Materials
,”
Int. J. Hydrogen Energy
,
45
(
56
), pp.
32285
32297
.
48.
Mahdi
,
J. M.
,
Mohammed
,
H. I.
,
Hashim
,
E. T.
,
Talebizadehsardari
,
P.
, and
Nsofor
,
E. C.
,
2020
, “
Solidification Enhancement With Multiple PCMs, Cascaded Metal Foam and Nanoparticles in the Shell-and-Tube Energy Storage System
,”
Appl. Energy
,
257
, p.
113993
.
49.
Shmueli
,
H.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2010
, “
Melting in a Vertical Cylindrical Tube: Numerical Investigation and Comparison With Experiments
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4082
4091
.
50.
Ji
,
C.
,
Qin
,
Z.
,
Low
,
Z.
,
Dubey
,
S.
,
Choo
,
F. H.
, and
Duan
,
F.
,
2018
, “
Non-Uniform Heat Transfer Suppression to Enhance PCM Melting by Angled Fins
,”
Appl. Therm. Eng.
,
129
, pp.
269
279
.
51.
Chen
,
G.
,
Sun
,
G.
,
Jiang
,
D.
, and
Su
,
Y.
,
2020
, “
Experimental and Numerical Investigation of the Latent Heat Thermal Storage Unit With PCM Packing at the Inner Side of a Tube
,”
Int. J. Heat Mass Transfer
,
152
, p.
119480
.
52.
Yadav
,
A.
,
2017
, “
Simulation of Melting Process of a Phase Change Material (PCM) Using ANSYS (Fluent)
,”
Int. Res. J. Eng. Technol.
,
4
(
5
), pp.
2395
2356
.
53.
Zheng
,
H.
,
Wang
,
C.
,
Liu
,
Q.
,
Tian
,
Z.
, and
Fan
,
X.
,
2018
, “
Thermal Performance of Copper Foam/Paraffin Composite Phase Change Material
,”
Energy Convers. Manage.
,
157
, pp.
372
381
.
54.
Hameter
,
M.
, and
Walter
,
H.
,
2016
, “
Influence of the Mushy Zone Constant on the Numerical Simulation of the Melting and Solidification Process of Phase Change Materials
,”
Comput. Aided Chem. Eng.
,
38
, pp.
439
444
.
55.
Ferekh
,
S.
,
Gwak
,
G.
,
Kyoung
,
S.
,
Kang
,
H. G.
,
Chang
,
M. H.
,
Yun
,
S. H.
, et al
,
2015
, “
Numerical Comparison of Heat-Fn-and Metal-Foam-Based Hydrogen Storage Beds During Hydrogen Charging Process
,”
Int. J. Hydrogen Energy
,
40
(
42
), pp.
14540
14550
.
56.
Mayer
,
U.
,
Groll
,
M.
, and
Supper
,
W.
,
1987
, “
Heat and Mass Transfer in Metal Hydride Reaction Beds: Experimental and Theoretical Results
,”
J. Less Common. Metals
,
131
(
1–2
), pp.
235
244
.
57.
Nam
,
J.
,
Ko
,
J.
, and
Ju
,
H.
,
2012
, “
Three-Dimensional Modeling and Simulation of Hydrogen Absorption in Metal Hydride Hydrogen Storage Vessels
,”
Appl. Energy
,
89
(
1
), pp.
164
175
.
58.
Kamkari
,
B.
,
Shokouhmand
,
H.
, and
Bruno
,
F.
,
2014
, “
Experimental Investigation of the Effect of Inclination Angle on Convection-Driven Melting of Phase Change Material in a Rectangular Enclosure
,”
Int. J. Heat Mass Transfer
,
72
, pp.
186
200
.
59.
Mâad
,
H. M.
,
Askri
,
F.
, and
Nasarallah
,
S. B.
,
2016
, “
Heat and Mass Transfer in a Metal Hydrogen Reactor Equipped With a Phase-Change Heat-Exchanger
,”
Int. J. Therm. Sci.
,
99
, pp.
271
278
.
60.
Yuan
,
Y.
,
Cao
,
X.
,
Xiang
,
B.
, and
Du
,
Y.
,
2016
, “
Effect of Installation Angle of Fins on Melting Characteristics of Annular Unit for Latent Heat Thermal Energy Storage
,”
Sol. Energy
,
136
, pp.
365
378
.
61.
Mellouli
,
S.
,
Askri
,
F.
,
Dhaou
,
H.
,
Jemni
,
A.
, and
Nasrallah
,
S. B.
,
2016
, “
A Study of the Thermal Behavior of a Deformable Metal-Hydride Bed
,”
Int. J. Hydrogen Energy
,
41
(
3
), pp.
1711
1724
.
62.
Chung
,
C. A.
, and
Ho
,
C. J.
,
2009
, “
Thermal-Fluid Behavior of the Hydriding and Dehydriding Processes in a Metal Hydride Hydrogen Storage Canister
,”
Int. J. Hydrogen Energy
,
34
(
10
), pp.
4351
4364
.
63.
Chung
,
C. A.
,
Chen
,
Y. Z.
,
Chen
,
Y. P.
, and
Chang
,
M. S.
,
2015
, “
CFD Investigation on Performance Enhancement of Metal Hydride Hydrogen Storage Vessels Using Heat Pipes
,”
Appl. Therm. Eng.
,
91
, pp.
434
446
.
64.
Rabienataj
,
D. A. A.
,
Hassanzadeh
,
A. H.
,
Moshfegh
,
A.
, and
Farhadi
,
M.
,
2016
, “
Absorption and Desorption of Hydrogen in Long Metal Hydride Tank Equipped With Phase Change Material Jacket
,”
Int. J. Hydrogen Energy
,
41
(
22
), pp.
9595
9610
.
You do not currently have access to this content.