Abstract

This study presents a two-part numerical study aimed at improving the prediction and understanding of regenerative cooling in supersonic nozzles. The first objective was to identify the most appropriate Reynolds-averaged Navier–Stokes turbulence model for accurately predicting conjugate heat transfer. Three turbulence models, Shear Stress Transport, Reynolds stress model (RSM)-ω, and RSM-ω with shear flow corrections (SFC), were tested through comparative analysis and simulations to evaluate their accuracy in predicting the heat flux rate and temperature on the nozzle wall. The results indicate that the RSM-ω turbulence model with shear flow corrections provides the best thermal prediction, achieving an improvement of 28% compared to the next-best model. The second part assesses the impact of key parameters on cooling efficiency. High coolant pressure proves advantageous for extremely hot-gas flow due to increased saturation temperature. Interestingly, the height of the cooling slot has less significance, suggesting other factors should be prioritized in film-cooling system design. The study also investigates the effectiveness of hydrogen coolant in reducing wall gas temperatures and preventing excessive heat that could melt the nozzle material. Transient results show that the gas-side wall temperature increases more rapidly than the coolant side during start-up and cooling the walls takes longer than reaching a steady-state for the hot-gas flow. The simulation results align well with experimental data, validating the accuracy and reliability of the numerical approach.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Zhihong
,
W.
,
Chunguang
,
W.
, and
Weiping
,
T.
,
2023
, “
Study on Separation Characteristics of Nozzles With Large Expansion Ratio of Solid Rocket Motors
,”
Aerospace
,
10
(
1
), p.
4
.
2.
Martelli
,
E.
,
Saccoccio
,
L.
,
Ciottoli
,
P. P.
,
Tinney
,
C. E.
,
Baars
,
W. J.
, and
Bernardini
,
M.
,
2020
, “
Flow Dynamics and Wall-Pressure Signatures in a High-Reynolds-Number Overexpanded Nozzle with Free Shock Separation
,”
J. Fluid Mech.
,
895
(A29).
3.
Lee
,
C.
,
Choi
,
K.
,
Kim
,
C.
, and
Han
,
S.
,
2020
, “
Computational Investigation of Flow Separation in a Thrust-Optimized Parabolic Nozzle During High-Altitude Testing
,”
AIAA Scitech 2020 Forum
.
4.
Ge
,
W.
,
Lei
,
C.
,
Bocheng
,
Z.
,
Haiwei
,
Y.
,
Ben
,
G.
, and
Genlai
,
W.
,
2021
, “
Numerical Investigation on Thrust Efficiency Dropping Phenomenon of Annular Expansion–Deflection Nozzles
,”
Phys. Fluids
,
33
(
12
), p.
126107
.
5.
Bensayah
,
K.
,
Hadjadj
,
A.
, and
Bounif
,
A.
,
2014
, “
Heat Transfer in Turbulent Boundary Layers of Conical and Bell Shaped Rocket Nozzles With Complex Wall Temperature
,”
Numer. Heat Transfer, Part A
,
66
(
3
), pp.
289
314
.
6.
Manikanda
,
R.
,
2015
, “
Numerical Modeling of Regenerative Cooling System for Large Expansion Ratio Rocket Engines
,”
J. Thermal Sci. Eng. Appl.
,
7
(
1
), p.
011012
.
7.
Marchi
,
C. H.
,
Laroca
,
F.
,
Silva
,
A. F.
, and
Hinckel
,
J. N.
,
2004
, “
Numerical Solutions of Flows in Rocket Engines with Regenerative Cooling
,”
Numer. Heat Transfer, Part A
,
45
(
7
), pp.
699
717
.
8.
Jokhakar
,
J.
, and
Naraghi
,
M. H.
,
2008
, “
A CFD-RTE Model for Thermal Analysis of Regeneratively Cooled Rocket Engines
,”
Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
Hartford, CT
,
July 21–23
.
9.
Bai
,
M.
, and
Chung
,
J. N.
,
2012
, “
Enhanced Cooling of a Liquid-Fueled Rocket Thrust Chamber by Metal Foams
,”
J. Propul. Power
,
28
(
2
), pp.
434
443
.
10.
Bianchi
,
D.
, and
Nasuti
,
F.
,
2013
, “
Numerical Analysis of Nozzle Material Thermochemical Erosion in Hybrid Rocket Engines
,”
J. Propul. Power
,
29
(
3
), pp.
547
558
.
11.
Manikanda Kumaran
,
R.
,
Sreenivasan
,
R.
,
Ganesan
,
S.
, and
Sundararajan
,
T.
,
2010
, “
Simulation of Regenerative Cooling System Performance for Large Expansion Ratio Rocket Motors
,”
Proceedings of the 20th National and 9th International ISHMT ASME Heat and Mass Transfer Conference
,
Mumbai, India
,
Jan. 4–6
, pp.
1663
1670
.
12.
Locke
,
J. M.
, and
Landrum
,
D. B.
,
2008
, “
Study of Heat Transfer Correlations for Supercritical Hydrogen in Regenerative Cooling Channels
,”
J. Propul. Power
,
24
(
1
), pp.
94
103
.
13.
Sargunaraj
,
M. P.
,
Torres
,
A.
,
Garduna
,
J.
,
Otto
,
M.
,
Kapat
,
J. S.
, and
Saxena
,
S.
,
2022
, “
Numerical Investigation of Film Cooling Effectiveness Including Shockwave Interaction in a Supersonic Nozzle Flow
,”
Proceedings of the AIAA SCITECH 2022 Forum
,
San Diego, CA & Virtual
,
Jan. 3–7
.
14.
Ludescher
,
S.
, and
Olivier
,
H.
,
2021
, “
Experimental Investigations of Film Cooling in a Conical Nozzle Under Rocket-Engine-Like Flow Conditions
,”
AIAA J.
,
57
(
3
), pp.
1172
1183
.
15.
Drexhage
,
M.
, and
Matthews
,
B.
,
1964
, “
Radiation Cooled Bipropellant Control Rocket Engines and Their Application in Space and Reentry Vehicles
,”
1st Annual Meeting
, Feb. 2013. .
16.
Hammad
,
K.
, and
Naraghi
,
M.
,
1989
, “
Radiative Heat Transfer in Rocket Thrust Chambers and Nozzles
,”
24th Thermophysics Conference
,
June 12–14
.
17.
Kawashima
,
H.
,
Hideo
,
N.
,
Takeo
,
T.
,
Kimito
,
O.
, and
Takao
,
K.
,
2012
, “
Verification of Prediction Methods for Methane Heat Transfer Characteristics
,”
Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
Atlanta, GA
,
July 30–Aug. 1
.
18.
Zhang
,
H. W.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2007
, “
Numerical Study of Film and Regenerative Cooling in a Thrust Chamber at High Pressure
,”
Numer. Heat Transfer, Part A
,
52
(
11
), pp.
991
1007
.
19.
Li
,
J.-W.
,
Liu
,
Y.
, and
Qin
,
L. Z.
,
2007
, “
Numerical Simulation of Flow and Heat Transfer in Round-to-Rectangular Nozzles
,”
Numer. Heat Transfer, Part A
,
51
(
3
), pp.
267
291
.
20.
Ghassan
,
N.
, and
El-Okda
,
Y.
,
2021
, “
Conjugate Effect on the Thermal Characteristics of Air Impinging Jet
,”
CFD Lett.
,
13
(
10
), pp.
25
35
.
21.
Ghassan
,
N.
,
El-Okda
,
Y.
,
Alzaabi
,
M.
, and
Almohsen
,
H.
,
2022
, “
Effects of the Conjugate Heat Transfer and Heat Flux Strength on the Thermal Characteristics of Impinging Jets
,”
CFD Lett.
,
14
(
7
), pp.
18
30
.
22.
Somasekharan
,
N.
,
Srikrishnan
,
A. R.
,
Kumar
,
H. S.
,
Ganesh
,
K. P.
,
Mohammad
,
A.
, and
Velamati
,
R. K.
,
2023
, “
Enhancement of Film Cooling Effectiveness in a Supersonic Nozzle
,”
Entropy
,
25
(
3
), p.
481
.
23.
Verma
,
M.
,
Arya
,
N.
, and
De
,
A.
,
2020
, “
Investigation of Flow Characteristics Inside a Dual Bell Nozzle With and Without Film Cooling
,”
Aerosp. Sci. Technol.
,
99
, p.
105741
.
24.
Murugesan
,
P.
,
Kumar
,
A. B.
,
Kambhampati
,
A. T.
,
Pillai
,
S.
,
Chandrasekar
,
G. C.
,
Raghavannambiar
,
S. A.
, and
Velamati
,
R. K.
,
2020
, “
Numerical Study of Characteristics of Underexpanded Supersonic Jet
,”
Aerosp. Technol. Manag.
,
12
, pp.
1
8
.
25.
Venkatesh
,
V.
,
Sriraam
,
J.
,
Subhash
,
K.
,
Velamati
,
R. K.
,
Srikrishnan
,
A. R.
,
Ramakrishnananda
,
B.
, and
Batchu
,
S.
,
2018
, “
Studies on Effusion Cooling: Impact of Geometric Parameters on Cooling Effectiveness and Coolant Consumption
,”
J. Aerosp. Sci. Technol.
,
77
, pp.
58
66
.
26.
Chen
,
G.
,
Liu
,
Y.
,
Rao
,
Y.
,
He
,
J.
, and
Qu
,
Y.
,
2019
, “
Numerical Investigation on Conjugate Heat Transfer of Impingement/Effusion Double-Wall Cooling With Different Crossflow Schemes
,”
Appl. Therm. Eng.
,
155
, pp.
515
524
.
27.
Xiang
,
J.
, and
Sun
,
B.
,
2018
, “
Research on Coupled Heat Transfer of Film Cooling in LOX/GH2 Thrust Chambers
,”
J. Therm. Sci. Technol.
,
13
(
2
), p.
JTST0035
.
28.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2000
,
Computational Methods for Fluid Dynamics
,
SpringerVerlag
,
New York
.
29.
Peter
,
J. M.
, and
Kloker
,
M. J.
,
2021
, “Direct Numerical Simulation of Supersonic Film Cooling by Tangential Blowing,”
High Performance Computing in Science and Engineering’19
,
E. N.
Wolfgang
,
H. K.
Dietmar
, and
M. R.
Michael
, eds.,
Springer
,
Berlin/Heidelberg, Germany
.
30.
Torres
,
Y.
,
Stefanini
,
L.
, and
Suslov
,
D.
,
2009
, “
Influence of Curvature in Regenerative Cooling System of Rocket Engine
,”
Prog. Propul. Phys.
,
1
, pp.
171
184
.
31.
Kim
,
S.
,
Joh
,
M.
,
Choi
,
H. S.
, and
Park
,
T. S.
,
2013
, “
Multidisciplinary Simulation of a Regeneratively Cooled Thrust Chamber of Liquid Rocket Engine: Turbulent Combustion and Nozzle Flow
,”
J. Heat Mass Transfer
,
70
, pp.
1066
1077
.
32.
Tong
,
X. L.
, and
Luke
,
E.
,
2004
, “
Turbulence Models and Heat Transfer in Nozzle Flows
,”
AIAA J.
,
42
(
11
), pp.
2391
2393
.
33.
Back
,
L. H.
,
Massier
,
P. F.
, and
Gier
,
H. L.
,
1964
, “
Convective Heat Transfer in a Convergent Divergent Nozzle
,”
Int. J. Heat Mass Transfer
,
7
(
5
), pp.
549
568
.
34.
Back
,
L. H.
,
Massier
,
P. F.
, and
Gier
,
H. L.
,
1965
, “Convective Heat Transfer in a Convergent Divergent Nozzle,” Technical Report No. NASA-CR-57326, JPL-TR-32-415.
35.
ANSYS
,
2019
,
Fluent Theory Guide
,
ANSYS, Inc.
,
Canonsburg, PA
.
36.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
37.
Gibson
,
M. M.
, and
Launder
,
B. E.
,
1978
, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
86
(
3
), pp.
491
511
.
38.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.
39.
Launder
,
B. E.
,
1989
, “
Second-Moment Closure: Present … and Future?
,”
Int. J. Heat Fluid Flow
,
10
(
4
), pp.
282
300
.
40.
Smits
,
A. J.
, and
Dussauge
,
J. P.
,
2006
,
Turbulent Shear Layers in Supersonic Flow
, 2nd ed.,
Springer
,
New York
.
41.
Debieve
,
J. F.
,
Dupont
,
P.
,
Smith
,
D. R.
, and
Smits
,
A. J.
,
1997
, “
Supersonic Turbulent Boundary Layer Subjected to Step Changes in Wall Temperature
,”
AIAA J.
,
35
(
1
), pp.
51
57
.
You do not currently have access to this content.