Abstract

In this work, an embedded heat source vapor chamber (EHS-VC) is proposed for efficient and cost-effective heat dissipation in a limited space of aerospace electronics. The effect of the filling liquid mass and the layers of copper mesh under different working conditions on the heat transfer performance is systematically investigated. EHS-VCs are filled by deionized water with different filling liquid mass of 0.5 g, 0.75 g, 1.0 g, 1.25 g, and 1.5 g. The layer numbers of 250 in−1 copper mesh in EHS-VC are 3, 5, and 7. The results indicate that the optimized EHS-VC with a filling liquid mass of 1.0 g and 5 layers of copper mesh shows superior thermal performance among all tested working conditions. The surface temperature distribution of the optimized EHS-VC remains relatively stable and the surface temperature of the optimized EHS-VC increases linearly with heat load. The optimized EHS-VC can achieve a minimum thermal resistance of 0.19 ℃/W and a maximum critical power of 140 W. Compared with diamond/copper composite plate (D/C CP), EHS-VC shows great potential for efficient and cost-effective heat dissipation in a limited space of aerospace electronics, resulting in a 25% reduction in thermal resistance at the same heat load of 140 W.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Kania
,
E. B.
, and
Costello
,
J.
,
2021
, “
Seizing the Commanding Heights: The PLA Strategic Support Force in Chinese Military Power
,”
J. Strateg. Stud.
,
44
(
2
), pp.
218
264
.
2.
Harris
,
M.
,
2018
, “
Tech Giants Race to Build Orbital Internet [News]
,”
IEEE Spectr.
,
55
(
6
), pp.
10
11
.
3.
Foust
,
J.
,
2019
, “
SpaceX's Space-Internet Woes: Despite Technical Glitches, the Company Plans to Launch the First of Nearly 12,000 Satellites in 2019
,”
IEEE Spectr.
,
56
(
1
), pp.
50
51
.
4.
Xu
,
Y.-C.
, and
Chen
,
Q.
,
2012
, “
Minimization of Mass for Heat Exchanger Networks in Spacecrafts Based on the Entransy Dissipation Theory
,”
Int. J. Heat Mass Transfer
,
55
(
19–20
), pp.
5148
5156
.
5.
Kirkconnell
,
C. S.
,
Luong
,
T. T.
,
Shaw
,
L. S.
,
Murphy
,
J. B.
,
Moody
,
E. A.
,
Lisiecki
,
A. L.
, and
Ellis
,
M. J.
,
2014
, “
High Efficiency Digital Cooler Electronics for Aerospace Applications
,”
Infrared Technology and Applications XL
,
Baltimore, MD
,
June 24
.
6.
Sarno
,
C.
, and
Tantolin
,
C.
,
2010
, “
Integration, Cooling and Packaging Issues for Aerospace Equipments
,”
2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)
,
Dresden, Germany
,
Mar. 8–12
, IEEE, pp.
1225
1230
.
7.
Hoffman
,
J. P.
,
Horst
,
S.
,
Veilleux
,
L.
,
Ghaemi
,
H.
, and
Shaffer
,
S.
,
2014
, “
Digital Calibration System Enabling Real-Time on-Orbit Beamforming
,”
2014 IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 1–8
, IEEE, pp.
1
11
.
8.
Simons
,
R. N.
, and
Waldstein
,
S. W.
,
2019
, “
Reconfigurable Gallium Nitride Based Fully Solid-State Microwave Power Module for Cognitive Radio Platforms
,”
2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)
,
Cleveland, OH
,
June 25–26
, IEEE, pp.
1
5
.
9.
Dursun
,
T.
, and
Soutis
,
C.
,
2014
, “
Recent Developments in Advanced Aircraft Aluminium Alloys
,”
Mater. Des.
,
56
, pp.
862
871
.
10.
Pramod
,
R.
,
Shanmugam
,
N. S.
,
Krishnadasan
,
C. K.
,
Radhakrishnan
,
G.
, and
Thomas
,
M.
,
2022
, “
Design and Development of Aluminum Alloy 6061-T6 Pressure Vessel Liner for Aerospace Applications: A Technical Brief
,”
Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl.
,
236
(
5
), pp.
1130
1148
.
11.
Boccardi
,
S.
,
Ciampa
,
F.
, and
Meo
,
M.
,
2019
, “
Design and Development of a Heatsink for Thermo-Electric Power Harvesting in Aerospace Applications
,”
Smart Mater. Struct.
,
28
(
10
), pp.
105057
.
12.
Shibata
,
P.
,
Ramoul
,
J.
,
Rodriguez
,
R.
,
Callegaro
,
A. D.
,
Suntharalingam
,
P.
,
Cotton
,
J. S.
, and
Emadi
,
A.
,
2021
, “
Weight Reduction Considerations for Thermal Management of Aerospace Power Electronics
,”
2021 IEEE Transportation Electrification Conference & Expo (ITEC)
,
Chicago, IL
,
June 21–25
, IEEE, pp.
502
506
.
13.
Dai
,
S.
,
Li
,
J.
, and
Lu
,
N.
,
2020
, “
Research Progress of Diamond/Copper Composites with High Thermal Conductivity
,”
Diamond Relat. Mater.
,
108
, p.
107993
.
14.
Abyzov
,
A. M.
,
Shakhov
,
F. M.
,
Averkin
,
A. I.
, and
Nikolaev
,
V. I.
,
2015
, “
Mechanical Properties of a Diamond–Copper Composite with High Thermal Conductivity
,”
Mater. Des.
,
87
, pp.
527
539
.
15.
Weber
,
L.
, and
Tavangar
,
R.
,
2007
, “
On the Influence of Active Element Content on the Thermal Conductivity and Thermal Expansion of Cu–X (X = Cr, B) Diamond Composites
,”
Scr. Mater.
,
57
(
11
), pp.
988
991
.
16.
Reay
,
D. A.
,
1974
, “
Heat Pipe: Its Development, and its Aerospace Applications
,”
Aeronaut. J.
,
78
(
765
), pp.
414
423
.
17.
Hodot
,
R.
,
Sartre
,
V.
,
Lefèvre
,
F.
, and
Sarno
,
C.
,
2016
, “
Modeling and Experimental Tests of a Loop Heat Pipe for Aerospace Applications
,”
J. Thermophys. Heat Transfer
,
30
(
1
), pp.
182
191
.
18.
Shukla
,
K. N.
,
2015
, “
Heat Pipe for Aerospace Applications—An Overview
,”
J. Electron. Cool. Therm. Control
,
05
(
01
), pp.
1
14
.
19.
McGlen
,
R. J.
,
2021
, “
An Introduction to Additive Manufactured Heat Pipe Technology and Advanced Thermal Management Products
,”
Therm. Sci. Eng. Prog.
,
25
, pp.
100941
.
20.
Ozguc
,
S.
,
Pai
,
S.
,
Pan
,
L.
,
Geoghegan
,
P. J.
, and
Weibel
,
J. A.
,
2019
, “
Experimental Demonstration of an Additively Manufactured Vapor Chamber Heat Spreader
,”
2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
,
Las Vegas, NV
,
May 28–31
, IEEE, pp.
416
422
.
21.
Zeng
,
J.
,
Zhang
,
S.
,
Chen
,
G.
,
Lin
,
L.
,
Sun
,
Y.
,
Chuai
,
L.
, and
Yuan
,
W.
,
2018
, “
Experimental Investigation on Thermal Performance of Aluminum Vapor Chamber Using Micro-Grooved Wick with Reentrant Cavity Array
,”
Appl. Therm. Eng.
,
130
, pp.
185
194
.
22.
Vasiliev
,
L. L.
,
1996
, “
Heat Pipe Science and Technology
,”
Int. J. Heat Mass Transfer
,
39
(
14
), pp.
3083
.
23.
Chi
,
S. W.
,
1976
,
Heat Pipe Theory and Practice
,
Hemisphere Publishers
, p.
242
.
24.
Lv
,
L.
, and
Li
,
J.
,
2017
, “
Managing High Heat Flux up to 500 W/Cm2 Through an Ultra-Thin Flat Heat Pipe with Superhydrophilic Wick
,”
Appl. Therm. Eng.
,
122
, pp.
593
600
.
25.
Lee
,
D.
, and
Byon
,
C.
,
2018
, “
Fabrication and Characterization of Pure-Metal-Based Submillimeter-Thick Flexible Flat Heat Pipe with Innovative Wick Structures
,”
Int. J. Heat Mass Transfer
,
122
, pp.
306
314
.
26.
Oshman
,
C.
,
Li
,
Q.
,
Liew
,
L.-A.
,
Yang
,
R.
,
Bright
,
V. M.
, and
Lee
,
Y. C.
,
2013
, “
Flat Flexible Polymer Heat Pipes
,”
J. Micromech. Microeng.
,
23
(
1
), p.
015001
.
27.
Liu
,
T.
,
Yan
,
W.
,
Wu
,
W.
, and
Wang
,
S.
,
2021
, “
Thermal Performance Enhancement of Vapor Chamber with Modified Thin Screen Mesh Wick by Laser Etching
,”
Case Stud. Therm. Eng.
,
28
, pp.
101525
.
28.
Yu
,
J.
,
Xin
,
Z.
,
Zhang
,
R.
,
Chen
,
Z.
,
Li
,
Y.
, and
Zhou
,
W.
,
2022
, “
Effect of Spiral Woven Mesh Liquid Pumping Action on the Heat Transfer Performance of Ultrathin Vapour Chamber
,”
Int. J. Therm. Sci.
,
182
, p.
107799
.
29.
Yu
,
J.
,
Li
,
Y.
,
Chen
,
Z.
,
Luo
,
Q.
,
Chen
,
H.
, and
Tang
,
X.
,
2021
, “
Effect of the Passage Area Ratio of Wick on an Ultra-Thin Vapour Chamber with a Spiral Woven Mesh Wick
,”
Appl. Therm. Eng.
,
196
, p.
117282
.
30.
Chen
,
Z.
,
Li
,
Y.
,
Zhou
,
W.
,
Deng
,
L.
, and
Yan
,
Y.
,
2019
, “
Design, Fabrication and Thermal Performance of a Novel Ultra-Thin Vapour Chamber for Cooling Electronic Devices
,”
Energy Convers. Manag.
,
187
, pp.
221
231
.
31.
Huang
,
G.
,
Li
,
W.
,
Zhong
,
G.
,
Abdulshaheed
,
A. A.
, and
Li
,
C.
,
2021
, “
Optimizing L-Shaped Heat Pipes with Partially-Hybrid Mesh-Groove Wicking Structures
,”
Int. J. Heat Mass Transfer
,
170
, p.
120926
.
32.
Abdulshaheed
,
A. A.
,
Wang
,
P.
,
Huang
,
G.
, and
Li
,
C.
,
2019
, “
High Performance Copper-Water Heat Pipes with Nanoengineered Evaporator Sections
,”
Int. J. Heat Mass Transfer
,
133
, pp.
474
486
.
33.
Mizuta
,
K.
,
Fukunaga
,
R.
,
Fukuda
,
K.
,
Nii
,
S.
, and
Asano
,
T.
,
2016
, “
Development and Characterization of a Flat Laminate Vapor Chamber
,”
Appl. Therm. Eng.
,
104
, pp.
461
471
.
34.
Meng
,
X.
,
Tan
,
S.
,
Yuan
,
Z.
,
Zhang
,
Y.
, and
Chen
,
L.
,
2023
, “
Experimental Study on the Heat Transfer Performance of a Vapour Chamber with Porous Wick Structures Printed via Metallic Additive Manufacturing
,”
Int. Commun. Heat Mass Transfer
,
140
, p.
106496
.
35.
Lu
,
L.
,
Xie
,
Y.
,
Zhang
,
F.
,
Liao
,
H.
,
Liu
,
X.
, and
Tang
,
Y.
,
2016
, “
Influence of a Sintered Central Column on the Thermal Hydraulic Performance of a Vapor Chamber: A Numerical Analysis
,”
Appl. Therm. Eng.
,
103
, pp.
1176
1185
.
36.
Dai
,
X.
,
Tran
,
L.
,
Yang
,
F.
,
Shi
,
B.
,
Yang
,
R.
,
Lee
,
Y. C.
, and
Li
,
C.
,
2011
, “
Characterization of Hybrid-Wicked Copper Heat Pipe
,”
ASME/JSME 2011 8th Thermal Engineering Joint Conference
,
Honolulu, HI
,
Mar. 13–17
.
You do not currently have access to this content.