Abstract

By using a vortex generator, the current numerical study suggests reducing the consequences of a counter-rotating vortex pair. For this study, the delta winglet pair in the common-flow-down configuration is recommended. The investigation of a suitable turbulence model has been studied. The impact of vortex generator placement on the parameters of film cooling efficiency has been studied using numerical simulation. The vortex generator is located before the film hole or upstream, after the film cooling hole or downstream, and both before and after the film cooling hole. The outcome suggests that a vortex generator placed upstream of the circular film cooling hole will function more effectively. The film cooling hole dimension and free stream velocity are used to maintain a Reynolds number of 17000. Additionally, the effects of altering the density ratio (DR), turbulent kinetic energy (TKE), and secondary flow velocity (uj) on cooling effectiveness have been studied. The outcome demonstrates that the decrease in cooling efficiency is caused by an increase in uj and T.K.E. A baseline case is used to compare the outcomes. It has been noted that numerical analysis using commercial code for fluent and the k-omega shear stress transport turbulence model performs better.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Foster
,
N. W.
, and
Lampard
,
D.
,
1980
, “
The Flow and Film Cooling Effectiveness Following Injection Through a Row of Holes
,”
J. Eng. Power
,
102
(
3
), pp.
584
588
.
2.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
International Gas Turbine and Aeroengine Congress and Exhibition, Orlando, FL
,
June 2–5
, pp.
1
8
.
3.
Lemmon
,
C. A.
,
Kohli
,
A.
, and
Thole
,
K. A.
,
1999
, “
Formation of Counter-Rotating Vortices in Film-Cooling Flows
,”
International Gas Turbine & Aeroengine Congress & Exhibition, Indianapolis, IN
,
June 7–10
.
4.
Fiebig
,
M.
,
1995
, “
Embedded Vortices in Internal Flow: Heat Transfer and Pressure Loss Enhancement
,”
Int. J. Heat Fluid Flow
,
16
(
5
), pp.
376
388
.
5.
Jacobi
,
A.
, and
Shah
,
R.
,
1995
, “
Heat Transfer Surface Enhancement Through the Use of Longitudinal Vortices: A Review of Recent Progress
,”
Exp. Therm. Fluid. Sci.
,
11
(
3
), pp.
295
309
.
6.
Chen
,
S. P.
,
Chya
,
M. K.
, and
Shih
,
T. I. P.
,
2011
, “
Effects of Upstream Ramp on the Performance of Film Cooling
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1085
1094
.
7.
Barigozzi
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2007
, “
The Effect of an Upstream Ramp on Cylindrical and Fan Shaped Film Cooling Hole Film Cooling—Part II Adiabatic Film Cooling Effectiveness
,”
Turbo Expo 2007, Montreal, Canada
,
May 14–17
, pp.
115
123
.
8.
Na
,
S.
, and
Shih
,
T. I. P.
,
2007
, “
Increasing Adiabatic Film Cooling Effectiveness Using an Upstream Ramp
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
464
471
.
9.
Zhou
,
W.
, and
Hu
,
H.
,
2016
, “
Improvements of Film Cooling Effectiveness by Using Barchan Dune Shaped Ramps
,”
Int. J. Heat Mass Transfer
,
103
, pp.
443
456
.
10.
Rallabandi
,
A. P.
,
Grizzle
,
J.
, and
Han
,
J. C.
,
2011
, “
Effect of Upstream Step on Flat Plate Film Cooling Effectiveness Using PSP
,”
ASME J. Turbomach.
,
133
(
4
), p.
041024
.
11.
Zhang
,
F.
,
Wang
,
X.
, and
Li
,
J.
,
2016
, “
The Effects of Upstream Steps With Unevenly Spanwise Distributed Height on Rectangular Hole Film Cooling Performance
,”
Int. J. Heat Mass Transfer
,
102
, pp.
1209
1221
.
12.
Falah Fakher Hatem
AL-Jabery
,
2014
, “
Enhancement of Film Cooling Performance by Using Ramped- Holes Injection
,” Ph.D. Thesis, University of Technology Machines and Equipment Engineering Department, Iraq.
13.
Shinn
,
A. F.
, and
Vanka
,
S. P.
,
2011
, “
Numerical Simulation of a Film-Cooling Flow With a Micro-Ramp Vortex Generator
,”
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Orlando, FL
, Jan.
4–7
, pp.
1
12
.
14.
Wijdevan
,
T. V. D.
, and
Katz
,
J.
,
2014
, “
Automative Application of Vortex Generators in Ground Effect
,”
ASME J. Fluids Eng.
,
136
(
2
), p. 021102.
15.
Yao
,
J.
, and
Yao
,
Y.
,
2011
, “
Computational Study of Hole Shape Effect on Film Cooling Performance
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
225
(
4
), pp.
1
14
.
16.
Dhungel
,
A.
,
Lu
,
Y.
,
Phillips
,
W.
,
Ekkad
,
S. V.
, and
Heidmann
,
J.
,
2002
, “
Film Cooling From a Row of Holes Supplemented With Anti-Vortex Holes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021007
.
17.
Kapadia
,
S.
,
Roy
,
S.
, and
Heidmann
,
J.
,
2003
, “
Detached Eddy Simulation of Turbine Blade Cooling
,”
36th AIAA Thermophysics Conference, AIAA-2003-3632
,
Orlando, FL
,
June 23–26
, pp.
23
26
.
18.
Sargison
,
J. E.
,
2001
, “
Development of a Novel Film Cooling Hole Geometry
,”
Ph.D. thesis
,
University of Oxford
.
19.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
20.
Katz
,
J.
, and
Morey
,
F.
,
2008
, “
Aerodynamics of Large Scale Vortex Generator in Ground Effect
,”
ASME J. Fluids Eng.
,
130
(
7
), p. 071101.
21.
Angele
,
K. P.
, and
Grewe
,
F.
,
2007
, “
Instantaneous Behaviour of Streamwise Vortices for Turbulent Boundary Layer Separation Control
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
226
235
.
22.
Park
,
J.
,
Pagan-Vazquez
,
A.
,
Alvarado
,
J. L.
,
Chamorro
,
P. L.
,
Lux
,
M. S.
, and
Marsh
,
P. C.
,
2017
, “
Characterization of Tab-Induced Counter-Rotating Vortex Pair for Mixing Application
,”
ASME J. Fluids Eng.
,
139
(
3
), p. 031102.
23.
Halder
,
N.
,
Saha
,
A. K.
, and
Panigrahi
,
P. K.
,
2020
, “
Enhancement in Film Cooling Effectiveness Using Delta Winglet Pair
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
5
), p. 051026.
24.
Halder
,
N.
, and
Panigrahi
,
P. K.
,
2021
, “
Cooling Performance of Vortex Generator
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
235
(
7
), pp.
1619
1638
.
25.
Halder
,
N.
,
Saha
,
A. K.
, and
Panigrahi
,
P. K.
,
2017
, “
Influence of Delta Wing Vortex Generator on Counter Rotating Vortex Pair in Film Cooling Application of Gas Turbine Blade
,”
Proceedings of the 5th International and 41st National Conference on FMFP 2014
,
Springer, New Delhi
,
Dec. 12–14
, pp.
95
103
.
26.
Li
,
Q.
, and
Liu
,
C.
,
2011
, “
Implicit LES for Supersonic Microramp Vortex Generator: New Discoveries and New Mechanisms
,”
Model. Simul. Eng.
,
2011
, pp.
1
15
.
27.
Chang
,
Y. T.
,
Lin
,
H. C.
,
Huang
,
C. J.
,
Tsai
,
G. L.
, and
Jiang
,
J. F.
,
2014
, “
Numerical Study of Thermal and Flow Characteristics of Plate-Fin Heat Sink With Longitudinal Vortex Generator Installed on the Ground
,”
Math. Probl. Eng.
,
2014
.
28.
Gawande
,
V. B.
,
Dhoble
,
A. S.
, and
Zodpe
,
D. B.
,
2014
, “
CFD Analysis to Study Effect of Circular Vortex Generator Placed in Inlet Section to Investigate Heat Transfer Aspects of Solar Air Heater
,”
Sci. World J.
,
2014
, pp.
1
11
.
29.
Tao
,
S. B.
,
Tang
,
A. P.
,
Xin
,
D. B.
,
Liu
,
K. T.
, and
Zhang
,
H. F.
,
2016
, “
Vortex-induced Vibration Suppression of a Circular Cylinder with Vortex Generators
,”
Shock Vibr.
,
2016
.
30.
Yang
,
F.
, and
Taslim
,
M. E.
,
2022
, “
Experimental and Numerical Studies of the Film Cooling Effectiveness Downstream of a Curved Diffusion Film Cooling Hole
,”
Int. J. Rotating Mach.
,
2022
.
31.
Fric
,
T.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.
32.
Haven
,
B. A.
, and
Kurosaka
,
M.
,
1996
, “
Improved Jet Coverage Through Vortex Cancellation
,”
AIAA J.
,
34
(
11
), pp.
2443
2444
.
33.
ANSYS FLUENT User's Guide.
34.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
35.
Ajersch
,
P.
,
Zhou
,
J.-M.
,
Ketler
,
S.
,
Salcudean
,
M.
, and
Gartshore
,
L. S.
,
1997
, “
Multiple Jets in a Crossflow: Detailed Measurements and Numerical Simulations
,”
ASME J. Turbomach.
,
119
(
2
), pp.
330
342
.
36.
Sarkar
,
S.
, and
Ranakoti
,
G.
,
2017
, “
Effect of Vortex Generators on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
139
(
6
), pp.
061009
.
37.
Baheri
,
S.
,
Tabrizi
,
S. A.
, and
Jubran
,
B. A.
,
2008
, “
Film Cooling Effectiveness From Trenched Shaped and Compound Holes
,”
Heat Mass Transfer
,
44
(
8
), pp.
989
998
.
You do not currently have access to this content.