Abstract

The improvement of the thermal and energy efficiency of buildings, regardless of their geographical location, is an objective that needs to be achieved quickly. The objective of this work is to develop a method to evaluate the thermal performance of a hollow block masonry double wall under controlled and pseudo-random experimental conditions. First, the thickness of the air space separating the two walls was varied to see the influence of the gap on this type of wall. Then, this technology was filled with polystyrene beads to improve the thermal performance at the wall scale. Finally, each case studied at wall scale was modeled and simulated numerically in 3D using COMSOL Multiphysics under the same conditions, properties, and dimensions as the one tested experimentally. The conclusions confirm that the double wall filled with polystyrene has excellent thermal behavior compared to the one without the addition of polystyrene beads and that the comparison between numerical and experimental results gave very satisfactory results.

References

1.
Energy Institute, UCL., BPIE., IEA., UNEP FI.
,
2020
, “
2020 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector
,” Global Alliance for Buildings and Construction (GlobalABC), Global for Buildings Performance Institute Europe, Paris. https://globalabc.org/sites/default/files/2021-03/Buildings-GSR-2020_Report_24-03-21_0.pdf
2.
Kong
,
X.
,
Li
,
J.
,
Fan
,
M.
,
Li
,
W.
, and
Li
,
H.
,
2022
, “
Study on the Thermal Performance of a New Double Layer PCM Trombe Wall With Multiple Phase Change Points
,”
Sol. Energy Mater. Sol. Cells
,
240
, p.
111685
.
3.
Mirrahimi
,
S.
,
Mohamed
,
M. F.
,
Haw
,
L. C.
,
Ibrahim
,
N. L. N.
,
Yusoff
,
W. F. M.
, and
Aflaki
,
A.
,
2016
, “
The Effect of Building Envelope on the Thermal Comfort and Energy Saving for High-Rise Buildings in Hot–Humid Climate
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
1508
1519
.
4.
Sassine
,
E.
,
Younsi
,
Z.
,
Cherif
,
Y.
, and
Antczak
,
E.
,
2017
, “
Thermal Performance Evaluation of a Massive Brick Wall Under Real Weather Conditions via the Conduction Transfer Function Method
,”
Case Stud. Constr. Mater.
,
7
, pp.
56
65
.
5.
Lee
,
J.
,
Kim
,
K.
,
Kim
,
J.
,
Song
,
D.
, and
Jeong
,
H.
,
2018
, “
Thermal Performance Evaluation of Low-Income Buildings Based on Indoor Temperature Performance
,”
Appl. Energy
,
221
, pp.
425
436
.
6.
Hendry
,
E. A. W.
,
2001
, “
Masonry Walls: Materials and Construction
,”
Constr. Build. Mater.
,
15
(
8
), pp.
323
330
.
7.
Md Din
,
M. F.
,
Dzinun
,
H.
,
Ponraj
,
M.
,
Chelliapan
,
S.
,
Noor
,
Z. Z.
,
Remaz
,
D.
, and
Iwao
,
K.
,
2012
, “
Investigation of Thermal Effect on Exterior Wall Surface of Building Material at Urban City Area
,”
Int. J. Energy Environ.
,
3
(
4
), pp.
531
540
.
8.
Ayoub
,
N.
,
Musharavati
,
F.
,
Pokharel
,
S.
, and
Gabbar
,
H. A.
,
2014
, “
Energy Consumption and Conservation Practices in Qatar-A Case Study of a Hotel Building
,”
Energy Build.
,
84
, pp.
55
69
.
9.
Al-Sanea
,
S. A.
, and
Zedan
,
M. F.
,
2001
, “
Effect of Insulation Location on Initial Transient Thermal Response of Building Walls
,”
J. Therm. Envelope Build. Sci.
,
24
(
4
), pp.
275
300
.
10.
Tingley
,
D. D.
,
Hathway
,
A.
, and
Davison
,
B.
,
2015
, “
An Environmental Impact Comparison of External Wall Insulation Types
,”
Build. Environ.
,
85
, pp.
182
189
.
11.
Tummu
,
P.
,
Chirarattananon
,
S.
,
Hien
,
V. D.
,
Chaiwiwatworakul
,
P.
, and
Rakkwamsuk
,
P.
,
2013
, “
Thermal Performance of Insulated Walls Enclosing Residential Spaces in Thailand
,”
Energy Build.
,
61
, pp.
323
332
.
12.
La Rosa
,
A. D.
,
Recca
,
A.
,
Gagliano
,
A.
,
Summerscales
,
J.
,
Latteri
,
A.
,
Cozzo
,
G.
, and
Cicala
,
G.
,
2014
, “
Environmental Impacts and Thermal Insulation Performance of Innovative Composite Solutions for Building Applications
,”
Constr. Build. Mater.
,
55
, pp.
406
414
.
13.
Intini
,
F.
, and
Kühtz
,
S.
,
2011
, “
Recycling in Buildings: an LCA Case Study of a Thermal Insulation Panel Made of Polyester Fiber, Recycled From Post-Consumer PET Bottles
,”
Int. J. Life Cycle Assess.
,
16
(
4
), pp.
306
315
.
14.
Al Fakhoury
,
J.
,
Sassine
,
E.
,
Cherif
,
Y.
,
Dgheim
,
J.
, and
Antczak
,
E.
,
2021
, “
Experimental Feasibility for the Incorporation of Solid Waste Aggregates in Masonry Hollow Blocks
,”
Eur. J. Environ. Civ. Eng.
,
26
(
14
), pp.
7177
7191
.
15.
Al Fakhoury
,
J.
,
Antczak
,
E.
,
Dgheim
,
J.
,
Chartier
,
T.
,
Cherif
,
Y.
, and
Sassine
,
E.
,
2022
, “
Towards a Better Understanding of 3D Heat Flow in Masonry Walls
,”
Int. J. Mason. Res. Innov.
,
1
(
1
), p.
1
.
16.
Sassine
,
E.
,
Cherif
,
Y.
,
Dgheim
,
J.
, and
Antczak
,
E.
,
2020
, “
Experimental and Numerical Thermal Assessment of Lebanese Traditional Hollow Blocks
,”
Int. J. Thermophys.
,
41
(
4
), p.
47
.
17.
Sassine
,
E.
,
Cherif
,
Y.
,
Dgheim
,
J.
, and
Antczak
,
E.
,
2006
, “
Investigation of the Mechanical and Thermal Performances of Concrete Hollow Blocks
,”
SN Appl. Sci.
,
2
(
12
), p.
2006
.
18.
Al Fakhoury
,
J.
,
Sassine
,
E.
,
Cherif
,
Y.
,
Dgheim
,
J.
,
Antczak
,
E.
, and
Chartier
,
T.
,
2022
, “
Analysis of Heat Transfer Phenomena Inside Concrete Hollow Blocks
,”
J. Build. Mater. Sci.
,
4
(
1
), pp.
21
33
.
19.
Ćalasan
,
M.
,
Abdel Aleem
,
S. H. E.
, and
Zobaa
,
A. F.
,
2020
, “
On the Root Mean Square Error (RMSE) Calculation for Parameter Estimation of Photovoltaic Models: A Novel Exact Analytical Solution Based on Lambert W Function
,”
Energy Convers. Manag.
,
210
, p.
112716
.
20.
Zeller-Plumhoff
,
B.
,
AlBaraghtheh
,
T.
,
Höche
,
D.
, and
Willumeit-Römer
,
R.
,
2021
, “
Computational Modelling of Magnesium Degradation in Simulated Body Fluid Under Physiological Conditions
,”
J. Magnesium Alloys
,
10
(
4
), pp.
965
978
.
21.
Dixit
,
A.
,
Pang
,
S. D.
,
Kang
,
S.-H.
, and
Moon
,
J.
,
2019
, “
Lightweight Structural Cement Composites With Expanded Polystyrene (EPS) for Enhanced Thermal Insulation
,”
Cem. Concr. Compos.
,
102
, pp.
185
197
.
22.
De Moraes
,
E. G.
,
Sangiacomo
,
L.
,
Stochero
,
N. P.
,
Arcaro
,
S.
,
Barbosa
,
L. R.
,
Lenzi
,
A.
,
Siligardi
,
C.
, and
Novaes de Oliveira
,
A. P.
,
2019
, “
Innovative Thermal and Acoustic Insulation Foam by Using Recycled Ceramic Shell and Expandable Styrofoam (EPS) Wastes
,”
Waste Manag.
,
89
, pp.
336
344
.
23.
Gnip
,
I.
,
Vėjelis
,
S.
, and
Vaitkus
,
S.
,
2012
, “
Thermal Conductivity of Expanded Polystyrene (EPS) at 10 °C and Its Conversion to Temperatures Within Interval From 0 to 50 °C
,”
Energy Build.
,
52
, pp.
107
111
.
You do not currently have access to this content.