Abstract

The cobweb-like microchannel heat sink is acknowledged for its exceptional heat transfer capabilities in comparison to other biomimetic microchannel heat sinks. The objective of this article is to improve the performance of the cobweb-like microchannel heat sink by optimizing its geometric structure parameters through a multi-objective approach. The Box–Behnken design method was utilized to conduct response surface analysis on the design variables, and the Pareto solution set was obtained by applying the multi-objective particle swarm optimization algorithm to the fitted functions of pressure and temperature. The TOPSIS method was used to select the most appropriate solution from the Pareto solution set. The performance of a microchannel heat sink was evaluated using the computational fluid dynamics (CFD) analysis. The optimized structure of the cobweb-like microchannel heat sink led to a decrease in the average temperature by 3 K and a reduction in pressure drop by 1514 Pa, as compared to the original design. This significant improvement in the overall performance highlights the importance of a well-designed channel structure in further enhancing the comprehensive performance of the microchannel heat sink.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sink for VLSI
,”
IEEE Electron Device Lett.
2
(
5
), pp.
126
129
.
2.
Jiaqiang
,
E.
,
Luo
,
B.
,
Han
,
D.
,
Chen
,
J.
,
Liao
,
G.
,
Zhang
,
F.
, and
Ding
,
J.
,
2022
, “
A Comprehensive Review on Performance Improvement of Micro Energy Mechanical System: Heat Transfer, Micro Combustion and Energy Conversion
,”
Energy
,
239
(
Part E, 15
), p.
122509
.
3.
Jahanbakhshi
,
A.
,
Nadooshan
,
A. A.
, and
Bayareh
,
M.
,
2022
, “
Multi-Objective Optimization of Microchannel Heatsink With Wavy Microtube by Combining Response Surface Method and Genetic Algorithm
,”
Eng. Anal. Boundary Elem.
,
174
(
140
), pp.
12
31
.
4.
Jiang
,
X.
,
Shah
,
S. W. A.
,
Liu
,
J.
,
Li
,
Y.
,
Zhang
,
S.
,
Wang
,
Z.
, and
Pan
,
C.
,
2022
, “
Design of Micro-Nano Structures for Counter Flow Diverging Microchannel Heat Sink With Extraordinarily High Energy Efficiency
,”
Appl. Therm. Eng.
,
209
(
5
), p.
118229
.
5.
Lu
,
S.
,
Zhai
,
X.
,
Gao
,
J.
, and
Wang
,
R.
,
2022
, “
Performance Optimization and Experimental Analysis of a Novel Low-Temperature Latent Heat Thermal Energy Storage Device
,”
Energy
,
239
(
Part E, 15
), p.
122496
.
6.
Mohammadpour
,
J.
,
Salehi
,
F.
, and
Lee
,
A.
,
2022
, “
Performance of Nano Encapsulated Phase Change Material Slurry Heat Transfer in a Microchannel Heat Sink With Dual-Circular Synthetic Jets
,”
Int. J. Heat Mass Tranfer.
,
184
(
184
), p.
122265
.
7.
Zhang
,
F.
,
Wu
,
B.
, and
Du
,
B.
,
2022
, “
Heat Transfer Optimization Based on Finned Microchannel Heat Sink
,”
Int. J. Therm. Sci.
,
172
(
1
), p.
107357
.
8.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
J. Heat Transfer
,
134
(
3
), p.
034001
.
9.
Chen
,
B.
,
Zhang
,
C.
,
Xu
,
Y.
, and
Chen
,
Z.
,
2023
, “
Hydrodynamic and Thermal Performance of In-Line Strip-Fin Manifold Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
209
(
1
), p.
124131
.
10.
Chen
,
Y.
, and
Cheng
,
P.
,
2005
, “
An Experimental Investigation on the Thermal Efficiency of Fractal Tree-Like Microchannel Nets
,”
Int. Commun. Heat Mass Transfer
,
32
(
7
), pp.
931
938
.
11.
Tan
,
H.
,
Wu
,
L.
,
Wang
,
M.
,
Yang
,
Z.
, and
Du
,
P.
,
2019
, “
Heat Transfer Improvement in Microchannel Heat Sink by Topology Design and Optimization for High Heat Flux Chip Cooling
,”
Int. J. Heat Mass Tranfer
,
129
(
Feb.
), pp.
681
689
.
12.
Tan
,
H.
,
Zong
,
K.
, and
Du
,
P.
,
2020
, “
Temperature Uniformity in Convective Leaf Vein-Shaped Fluid Microchannels for Phased Array Antenna Cooling
,”
Int. J. Therm Sci.
,
150
(
5
), p.
106224
.
13.
Bejan
,
A.
, and
Errera
,
M. R.
,
2011
, “
Deterministic Tree Networks for Fluid Flow: Geometry for Minimal Flow Resistance Between a Volume and One Point
,”
Fractals
,
5
(
4
), pp.
685
695
.
14.
Long-Wen
,
W. U.
,
Ting
,
L. U.
,
Jia-Jin
,
C.
,
Ming-Yang
,
W.
, and
Ping-An
,
D. U.
,
2018
, “
A Study of Bionic Micro-Channel Topology for Chip Cooling
,”
Acta Electron. Sin.
,
46
(
5
), pp.
1153
1159
.
15.
Bejan
,
A.
,
1997
, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Tranfer
,
40
(
4
), pp.
799
811
.
16.
Wang
,
X. Q.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2006
, “
Thermal Characteristics of Tree-Shaped Microchannel Nets for Cooling of a Rectangular Heat Sink
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1103
1112
.
17.
Barrau
,
J.
,
Chemisana
,
D.
,
Rosell
,
J.
,
Tadrist
,
L.
, and
Ibañez
,
M.
,
2010
, “
An Experimental Study of a New Hybrid Jet Impingement/Micro-Channel Cooling Scheme
,”
Appl. Therm. Eng.
,
30
(
14
), pp.
2058
2066
.
18.
Jang
,
S. P.
,
Kim
,
S. J.
, and
Paik
,
K. W.
,
2003
, “
Experimental Investigation of Thermal Characteristics for a Microchannel Heat Sink Subject to an Impinging Jet, Using a Micro-Thermal Sensor Array
,”
Sens. Actuators, A-Phys.
,
105
(
2
), pp.
211
224
.
19.
Chen
,
Y.
, and
Cheng
,
P.
,
2002
, “
Heat Transfer and Pressure Drop in Fractal Tree-Like Microchannel Nets
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2643
2648
.
20.
Duncan
,
A. B.
, and
Peterson
,
G. P.
,
1994
, “
Review of Microscale Heat Transfer
,”
Appl. Mech. Rev.
,
47
(
9
), pp.
397
428
.
21.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Analysis of Three-Dimensional Heat Transfer in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Tranfer
,
45
(
19
), pp.
3973
3985
.
22.
Bello-Ochende
,
T.
,
Liebenberg
,
L.
, and
Meyer
,
J. P.
,
2007
, “
Constructal Cooling Channels for Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Tranfer
,
50
(
21
), pp.
4141
4150
.
23.
Vafai
,
K.
, and
Zhu
,
L.
,
1999
, “
Analysis of Two-Layered Micro-Channel Heat Sink Concept in Electronic Cooling
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2287
2297
.
24.
Alperen
,
Y.
, and
Sertac
,
C.
,
2020
, “
Multi Objective Optimization of a Micro-Channel Heat Sink Through Genetic Algorithm
,”
Int. J. Heat Mass Transfer
,
146
, p.
118847
.
25.
Liu
,
H.-l.
,
Shi
,
H.-b.
,
Shen
,
H.
, and
Xie
,
G.
,
2019
, “
The Performance Management of a Li-Ion Battery by Using Tree-Like Mini-Channel Heat Sinks: Experimental and Numerical Optimization
,”
Energy
,
189
(
15
), p.
116150
.
26.
Ge
,
Y.
,
Wang
,
S.
,
Liu
,
Z.
, and
Liu
,
W.
,
2019
, “
Optimal Shape Design of a Minichannel Heat Sink Applying Multi-Objective Optimization Algorithm and Three-Dimensional Numerical Method
,”
Appl. Therm. Eng.
,
148
(
5
), pp.
120
128
.
27.
Yang
,
Y.-T.
,
Tsai
,
K.-T.
,
Wang
,
Y.-H.
, and
Lin
,
S.-H.
,
2014
, “
Numerical Study of Microchannel Heat Sink Performance Using Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
27
35
.
28.
Zhang
,
L. Y.
,
Zhang
,
Y. F.
,
Chen
,
J. Q.
, and
Bai
,
S. L.
,
2015
, “
Fluid Flow and Heat Transfer Characteristics of Liquid Cooling Microchannels in LTCC Multilayered Packaging Substrate
,”
Int. J. Heat Mass Transfer
,
84
, pp.
339
345
.
29.
Dong
,
X.
, and
Liu
,
X.
,
2021
, “
Multi-Objective Optimization of Heat Transfer in Microchannel for Non-Newtonian Fluid
,”
Chem. Eng. J.
,
412
(
15
), p.
128594
.
30.
Zhang
,
X.
,
Ji
,
Z.
,
Wang
,
J.
, and
Lv
,
X.
,
2023
, “
Research Progress on Structural Optimization Design of Microchannel Heat Sinks Applied to Electronic Devices
,”
Appl. Therm. Eng.
,
235
(
25
), p.
121294
.
31.
Luo
,
L.
,
Du
,
W.
,
Wang
,
S.
,
Wu
,
W.
, and
Zhang
,
X.
,
2019
, “
Multi-Objective Optimization of the Dimple/Protrusion Channel With Pin Fins for Heat Transfer Enhancement
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
2
), pp.
790
813
.
32.
Rao
,
R. V.
,
More
,
K. C.
,
Taler
,
J.
, and
Ocłoń
,
P.
,
2016
, “
Dimensional Optimization of a Micro-Channel Heat Sink Using Jaya Algorithm
,”
Appl. Therm. Eng
,
103
(
25
), pp.
572
582
.
33.
Paul
,
D.
,
Saha
,
S.
, and
Mathew
,
J.
,
2019
, “
Fusion of Evolvable Genome Structure and Multi-Objective Optimization for Subspace Clustering
,”
Pattern Recognit
,
95
, pp.
58
71
.
34.
Liu
,
P.
,
Yan
,
Y.
,
Zhang
,
X.
,
Luo
,
Y.
, and
Kang
,
Z.
,
2021
, “
Topological Design of Microstructures Using Periodic Material-Field Series-Expansion and Gradient-Free Optimization Algorithm
,”
Mater. Design
,
199
(
1
), p.
109437
.
35.
Wang
,
G.
,
Ding
,
G.
,
Liu
,
R.
,
Xie
,
D.
,
Wu
,
Y.
, and
Miao
,
X.
,
2022
, “
Multi-Objective Optimization of a Bidirectional-Ribbed Microchannel Based on CFD and NSGA-II Genetic Algorithm
,”
Int. J. Therm. Sci.
,
181
, p.
107731
.
36.
Baodong
,
S.
,
Lifeng
,
W.
,
Jianyun
,
L.
, and
Heming
,
C.
,
2011
, “
Multi-Objective Optimization Design of a Micro-Channel Heat Sink Using Adaptive Genetic Algorithm
,”
Int. J. Numer. Methods Heat Fluid Flow
,
21
(
3
), pp.
353
364
.
37.
Amanifard
,
N.
,
Nariman-Zadeh
,
N.
,
Borji
,
M.
,
Khalkhali
,
A.
, and
Habibdoust
,
A.
,
2008
, “
Modelling and Pareto Optimization of Heat Transfer and Flow Coefficients in Microchannels Using GMDH Type Neural Networks and Genetic Algorithms
,”
Energy Convers. Manage.
,
49
(
2
), pp.
311
325
.
38.
Foli
,
K.
,
Okabe
,
T.
,
Olhofer
,
M.
,
Jin
,
Y.
, and
Sendhoff
,
B.
,
2006
, “
Optimization of Micro Heat Exchanger: CFD, Analytical Approach and Multi-Objective Evolutionary Algorithms
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
1090
1099
.
39.
Hu
,
G.
, and
Xu
,
S.
,
2009
, “
Optimization Design of Microchannel Heat Sink Based on SQP Method and Numerical Simulation
,”
International Conference on Applied Superconductivity and Electromagnetic Devices
,
Chengdu, China
,
Sept. 25–27
, pp.
89
92
.
40.
Wang
,
J. Y.
,
Yan
,
W.
,
Sang
,
T.
,
Guo
,
P.
, and
Dong
,
C. B.
,
2019
, “
Aeroelastic Response and Structural Improvement for Heavy-Duty Truck Cab Deflectors
,” Automotive Technical Papers.
41.
Kulkarni
,
K.
,
Afzal
,
A.
, and
Kim
,
K.-Y.
,
2016
, “
Multi-Objective Optimization of a Double-Layered Microchannel Heat Sink With Temperature-Dependent Fluid Properties
,”
Appl. Therm. Eng.
,
99
(
25
), pp.
262
272
.
42.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Ganic
,
E. N.
,
1985
,
Handbook of Heat Transfer Applications (2nd ed.)
,
McGraw-Hill Book Company
,
New York
, pp.
973
.
43.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
44.
Dubeya
,
P.
,
Ghiaa
,
U.
, and
Turkevich
,
L. A.
,
2014
, “
Numerical Investigation of Sheath and Aerosol Flows in the Flow Combination Section of a Baron Fiber Classifier
,”
Aerosol. Sci. Technol.
,
48
(
8
), pp.
896
905
.
You do not currently have access to this content.