Abstract

Aerodynamic experiments in the high-speed flow domain mainly rely on precise measurement of transient surface temperatures and subsequent quantification of heat flux. These experiments are primarily simulated in high-enthalpy short-duration facilities for which test flow durations are in the order of a few milliseconds, and the thermal loads resemble the nature of step/impulse. This study focuses on a specially designed fast-response coaxial surface junction thermal probe (CSTP) with the capability of capturing transient temperature signals. The CSTP, with a 3.25 mm diameter and 13 mm length, incorporates a precisely examined sensing junction (20 µm thickness) and EDX, FESEM verified surface characterization. The short-duration calibration experiments are realized to mimic the simulated flow conditions of high-enthalpy test facilities. The classical one-dimensional heat conduction modeling has been used to deduce surface heat flux from the acquired temperature responses. It demonstrates a commendable accuracy of ±2.5% when compared with known heat loads of calibration experiments. Departing from traditional heat conduction models, an advanced soft-computing technique, the Adaptive Neuro-Fuzzy Inference System (ANFIS), is introduced for short-duration heat flux predictions. This methodology successfully recovers known (step or ramp) heat loads within a specific experimental time frame (0.2 s). The results exhibit excellent agreement in the prediction of trend and magnitude, carrying uncertainties of ±3% for radiative and ±5% for convective experiments. Consequently, the CSTP appears as a rapidly responsive transient heat flux sensor for real-time short-duration experiments. The soft-computing approach (ANFIS) offers an alternative means of heat flux estimation from temperature history irrespective of the mode of heat transfer and nature of heat load, marked by its prediction accuracy, diminished mathematical intricacies, and reduced numerical requisites.

References

1.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
, “
Heat-Transfer Measurements in Short-Duration Hypersonic Facilities
,” AGARDograph-AG-165, Technical Editing and Reproduction Ltd., London. Report No. AGARD-AG-165.
2.
Alkidas
,
A. C.
, and
Cole
,
R. M.
,
1985
, “
Transient Heat Flux Measurements in a Divided-Chamber Diesel Engine
,”
ASME J. Heat Transfer
,
107
(
2
), pp.
439
444
.
3.
Gatowski
,
J. A.
,
Smith
,
M. K.
, and
Alkidas
,
A. C.
,
1989
, “
An Experimental Investigation of Surface Thermometry and Heat Flux
,”
Exp. Therm. Fluid Sci.
,
2
(
3
), pp.
280
285
.
4.
Lawton
,
B.
,
1987
, “
Effect of Compression and Expansion on Instantaneous Heat Transfer in Reciprocating Internal Combustion Engines
,”
Proc. Inst. Mech. Eng.
,
201
(
3
), pp.
175
186
.
5.
Li
,
J.
,
Chen
,
H.
,
Zhang
,
S.
,
Zhang
,
X.
, and
Yu
,
H.
,
2017
, “
On the Response of Coaxial Surface Thermocouples for Transient Aerodynamic Heating Measurements
,”
Exp. Therm. Fluid Sci.
,
86
, pp.
141
148
.
6.
Desikan
,
S. L. N.
,
Suresh
,
K.
,
Srinivasan
,
K.
, and
Raveendran
,
P. G.
,
2016
, “
Fast Response Coaxial Thermocouple for Short Duration Impulse Facilities
,”
Appl. Therm. Eng.
,
96
, pp.
48
56
.
7.
Irimpan
,
K. J.
,
Mannil
,
N.
,
Arya
,
H.
, and
Menezes
,
V.
,
2015
, “
Performance Evaluation of Coaxial Thermocouple Against Platinum Thin Film Gauge for Heat Flux Measurement in Shock Tunnel
,”
Measurement
,
61
, pp.
291
298
.
8.
Rout
,
A. K.
,
Agarwal
,
S.
,
Sahoo
,
N.
, and
Kalita
,
P.
,
2021
, “
Fast Response Transient Behaviour of a Coaxial Thermal Probe and Recovery of Surface Heat Flux for Shock Tube Flows
,”
Exp. Therm. Fluid. Sci.
,
127
, p.
110427
.
9.
Sanderson
,
S. R.
, and
Sturtevant
,
B.
,
2002
, “
Transient Heat Flux Measurement Using a Surface Junction Thermocouple
,”
Rev. Sci. Instrum.
,
73
(
7
), pp.
2781
2787
.
10.
Kumar
,
R.
, and
Sahoo
,
N.
,
2013
, “
Dynamic Calibration of a Coaxial Thermocouples for Short Duration Transient Measurements
,”
ASME J. Heat Transfer
,
135
(
12
), p.
124502
.
11.
Mohammed
,
H. A.
,
Salleh
,
H.
, and
Yusoff
,
M. Z.
,
2011
, “
The Effect of Scratch Technique on the Thermal-Product Value of Temperature Sensors
,”
Thermophys. Aeromech.
,
18
(
1
), pp.
51
64
.
12.
Rout
,
A. K.
,
Sahoo
,
N.
, and
Kalita
,
P.
,
2020
, “
Effectiveness of Coaxial Surface Junction Thermal Probe for Transient Measurements Through Laser Based Heat Flux Assessment
,”
Heat Mass Transfer
,
56
(
4
), pp.
1141
1152
.
13.
Mohammed
,
H.
,
Salleh
,
H.
, and
Yusoff
,
M. Z.
,
2008
, “
Design and Fabrication of Coaxial Surface Junction Thermocouples for Transient Heat Transfer Measurements
,”
Int. Commun. Heat Mass Transfer
,
35
(
7
), pp.
853
859
.
14.
Buragohain
,
M.
,
2009
, “
Adaptive Network Based Fuzzy Inference System (ANFIS) as a Tool for System Identification with Special Emphasis on Training Data Minimization
,”
Ph.D. thesis
,
IIT
,
Guwahati, India
.
15.
Pratihar
,
D. K.
,
2014
,
Soft Computing: Fundamentals and Applications
,
Narosa Publishing House Pvt. Ltd
,
New Delhi
.
16.
Jang
,
J. S.
,
1993
, “
ANFIS: Adaptive-Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst. Man Cybern.
,
23
(
3
), pp.
665
685
.
17.
El-Hasnony
,
I. M.
,
Barakat
,
S. I.
, and
Mostafa
,
R. R.
,
2020
, “
Optimized ANFIS Model Using Hybrid Metaheuristic Algorithms for Parkinson's Disease Prediction in IoT Environment
,”
IEEE Access
,
8
, pp.
119252
119270
.
18.
Bhowmik
,
S.
,
Panua
,
R.
,
Kumar Ghosh
,
S.
,
Debroy
,
D.
, and
Paul
,
A.
,
2018
, “
A Comparative Study of Artificial Intelligence Based Models to Predict Performance and Emission Characteristics of a Single Cylinder Diesel Engine Fueled With Diesosenol
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041004
.
19.
Fogaça
,
M. B.
,
Dias
,
D. T.
,
Gómez
,
S. L.
,
Behainne
,
J. J. R.
, and
Turchiello
,
R. D. F.
,
2021
, “
Effectiveness of a Shell and Helically Coiled Tube Heat Exchanger Operated With Gold Nanofluids at Low Concentration: A Multi-Level Factorial Analysis
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021029
.
20.
Singh
,
P.
, and
Talukdar
,
P.
,
2020
, “
Drying Characteristics of Elephant Foot Yam and Performance Evaluation of Convective Dryer in Kinetically and Equilibrium Controlled Regime Under Varying Conditions
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
5
), p.
051005
.
21.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2018
, “
Numerical Analysis and ANFIS Modeling for Mixed Convection of CNT-Water Nanofluid Filled Branching Channel With an Annulus and a Rotating Inner Surface at the Junction
,”
Int. J. Heat Mass Transfer
,
127
, pp.
583
599
.
22.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2018
, “
Magnetic Field Effects on the Forced Convection of CuO-Water Nanofluid Flow in a Channel With Circular Cylinders and Thermal Predictions Using ANFIS
,”
Int. J. Mech. Sci.
,
146
, pp.
9
24
.
23.
Karbalaei Mehdi
,
J.
,
Nejat
,
A.
, and
Shariat Panahi
,
M.
,
2017
, “
Heat Transfer Improvement in Automotive Brake Disks Via Shape Optimization of Cooling Vanes Using Improved TPSO Algorithm Coupled With Artificial Neural Network
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011013
.
24.
Nilashi
,
M.
,
Samad
,
S.
,
Manaf
,
A. A.
,
Ahmadi
,
H.
,
Rashid
,
T. A.
,
Munshi
,
A.
, and
Ahmed
,
O. H.
,
2019
, “
Factors Influencing Medical Tourism Adoption in Malaysia: A DEMATEL-Fuzzy TOPSIS Approach
,”
Comput. Ind. Eng.
,
137
, pp.
1
11
.
25.
Arji
,
G.
,
Ahmadi
,
H.
,
Nilashi
,
M.
,
Rashid
,
T. A.
,
Ahmed
,
O. H.
,
Aljojo
,
N.
, and
Zainol
,
A.
,
2019
, “
Fuzzy Logic Approach for Infectious Disease Diagnosis: A Methodical Evaluation, Literature and Classification
,”
Biocybern. Biomed. Eng.
,
39
(
4
), pp.
937
955
.
26.
Nilashi
,
M.
,
Ahmadi
,
H.
,
Manaf
,
A. A.
,
Rashid
,
T. A.
,
Samad
,
S.
,
Shahmoradi
,
L.
,
Aljojo
,
N.
, and
Akbari
,
E.
,
2020
, “
Coronary Heart Disease Diagnosis Through Self-Organizing Map and Fuzzy Support Vector Machine With Incremental Updates
,”
Int. J. Fuzzy Syst.
,
22
(
4
), pp.
1376
1388
.
27.
Rout
,
A. K.
,
Nanda
,
S. R.
,
Sahoo
,
N.
,
Kalita
,
P.
, and
Kulkarni
,
V. N.
,
2021
, “
Implementation of Soft Computing Technique for Recovery of Impulsive Heat Loads
,”
J. Thermophys. Heat Transfer
,
36
(
1
), pp.
108
117
.
28.
Sundqvist
,
B.
,
1992
, “
Thermal Diffusivity and Thermal Conductivity of Chromel, Alumel and Constantan in the Range 100–450 K
,”
J. Appl. Phys.
,
72
(
2
), pp.
539
544
.
29.
Rout
,
A. K.
,
Sahoo
,
N.
, and
Kalita
,
P.
,
2021
, “
Transient Response Characteristics and Performance Assessment of a Calorimetric Surface Junction Probe Under Impulsive Thermal Loading
,”
ASME J. Heat Transfer
,
143
(
6
), p.
062901
.
30.
Buttsworth
,
D. R.
,
2001
, “
Assessment of Effective Thermal Product of Surface Junction Thermocouples on Millisecond and Microsecond Time Scales
,”
Exp. Therm. Fluid Sci.
,
25
(
6
), pp.
409
420
.
31.
Agarwal
,
S.
,
Sahoo
,
N.
, and
Singh
,
R. K.
,
2016
, “
Experimental Techniques for Thermal Product Determination of Coaxial Surface Junction Thermocouples During Short Duration Transient Measurements
,”
Int. J. Heat Mass Transfer
,
103
, pp.
327
335
.
32.
Kumar
,
R.
,
Sahoo
,
N.
,
Kulkarni
,
V.
, and
Singh
,
A.
,
2011
, “
Laser Based Calibration Technique of Thin Film Gauges for Short Duration Transient Measurements
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
044504
.
33.
Taler
,
J.
,
1996
, “
Theory of Transient Experimental Techniques for Surface Heat Transfer
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3733
3748
.
34.
Ramesh
,
P.
,
Nanda
,
S. R.
,
Kulkarni
,
V.
, and
Dwivedy
,
S. K.
,
2019
, “
Application of Neural-Networks and Neuro-Fuzzy Systems for the Prediction of Short-Duration Forces Acting on the Blunt Bodies
,”
Soft Comput.
,
23
(
14
), pp.
5725
5738
.
35.
Abdulshahed
,
A. M.
,
Longstaff
,
A. P.
, and
Fletcher
,
S.
,
2015
, “
The Application of ANFIS Prediction Models for Thermal Error Compensation on CNC Machine Tools
,”
Appl. Soft Comput.
,
27
, pp.
158
168
.
36.
Rout
,
A. K.
,
Nanda
,
S. R.
,
Sahoo
,
N.
,
Kalita
,
P.
, and
Kulkarni
,
V.
,
2021
, “
Soft Computing—A Way Ahead to Recover Heat Flux for Short Duration Experiments
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
3
), p.
031008
.
37.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.