Abstract

To enhance the cooling deficiency that occurs in a baseline endwall using axially-arranged cooling holes, this paper proposes a new locally-enhanced hole layout using curtain cooling and fan-shaped film holes being arranged on iso-Mach lines. The objective of cooling hole redesign is to minimize secondary flows and thus to provide better film coverage. In experiments, infrared thermography techniques are applied to validate overall cooling effectiveness of the newly-designed endwall, and aero-thermal fields at the cascade exit are detected by five-hole and thermocouple probes. Additionally, computational fluid dynamic simulations are performed to provide complementary flow insights. A comparison with the baseline hole layout reveals that for a given total coolant flowrate, the newly-designed endwall significantly improves the cooling performance by up to 27% without a noticeable aerodynamic penalty, resulting in a lower and more uniform temperature field. Curtain coolant effectively suppresses the development of horseshoe vortex and provides adequate thermal protection for leading-edge junctures and pressure-side corner regions. The redistribution of fan-shaped film holes reinforces the cooling performance in the passage throat and trailing-edge regions. At low and high total mass flowrates, the coolant split between various cooling sources has a substantial impact on cooling performance.

References

1.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
J. Eng. Power
,
102
(
4
), pp.
866
874
.
2.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
7
), pp.
1
8
.
3.
Yang
,
X.
,
Liu
,
Z.
,
Liu
,
Z. S.
,
Feng
,
Z. P.
, and
Simon
,
T. W.
,
2018
, “
Combustor Wall Coolant Discharge Effects on Turbine Vane Endwall Curtain Cooling
,”
J. Thermophys. Heat Transfer
,
32
(
4
), pp.
933
945
.
4.
Liu
,
G. W.
,
Liu
,
S. L.
,
Zhu
,
H. R.
,
Lapworth
,
B. C.
, and
Forest
,
A. E.
,
2004
, “
Endwall Heat Transfer and Film Cooling Measurements in a Turbine Cascade With Injection Upstream of Leading Edge
,”
Heat Transfer Asian Res.
,
33
(
3
), pp.
141
152
.
5.
Oke
,
R. A.
,
Simon
,
T. W.
,
Burd
,
S. W.
, and
Vahlberg
,
R.
,
2000
, “
Measurements in a Turbine Cascade Over a Contoured Endwall: Discrete Hole Injection of Bleed Flow
,” ASME Paper No. 2000-GT-0214.
6.
Zhang
,
L. Z.
, and
Jaiswal
,
R. S.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
738
.
7.
Li
,
Z. G.
,
Bai
,
B.
,
Li
,
J.
,
Mao
,
S.
,
Ng
,
W.
,
Xu
,
H. Z.
, and
Fox
,
M.
,
2022
, “
Endwall Heat Transfer and Cooling Performance of a Transonic Turbine Vane With Upstream Injection Flow
,”
ASME J. Turbomach.
,
144
(
4
), p.
041004
.
8.
Zhang
,
L. Z.
,
Yin
,
J.
,
Liu
,
K.
, and
Hee-Koo
,
M.
,
2015
, “
Effect of Hole Diameter on Nozzle Endwall Film Cooling and Associated Phantom Cooling
,” ASME Paper No. GT2015-42541.
9.
Thomas
,
M.
, and
Povey
,
T.
,
2016
, “
Improving Turbine Endwall Cooling Uniformity by Controlling Near-Wall Secondary Flows
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
231
(
14
), pp.
2689
2705
.
10.
Shiau
,
C. C.
,
Sahin
,
I.
,
Wang
,
N.
,
Han
,
J.
,
Xu
,
H. Z.
, and
Fox
,
M.
,
2018
, “
Turbine Vane Endwall Film Cooling Comparison From Five Film-Hole Design Patterns and Three Upstream Leakage Injection Angles
,” ASME Paper No. GT2018-75272.
11.
Salinas
,
D. A.
,
Ullah
,
I.
,
Wright
,
L. M.
,
Han
,
J.
,
McClintic
,
J. W.
,
Crites
,
D. C.
, and
Riahi
,
A.
,
2020
, “
Upstream Film Cooling on the Contoured Endwall of a Transonic Turbine Vane in an Annular Cascade
,” ASME Paper No. GT2020-16188.
12.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1997
, “
Aerodynamic Aspects of Endwall Film-Cooling
,”
ASME J. Turbomach.
,
119
(
4
), pp.
786
793
.
13.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1999
, “
The Design of an Improved Endwall Film-Cooling Configuration
,”
ASME J. Turbomach.
,
121
(
4
), pp.
772
780
.
14.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2005
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First-Stage Vane
,”
ASME J. Turbomach.
,
127
(
2
), pp.
297
305
.
15.
Satta
,
F.
, and
Tanda
,
G.
,
2015
, “
Effect of Discrete-Hole Arrangement on Film-Cooling Effectiveness for the Endwall of a Turbine Blade Cascade
,”
Appl. Therm. Eng.
,
91
(
5
), pp.
507
514
.
16.
Su
,
H.
,
Pu
,
J.
,
Wang
,
J. H.
,
Yuan
,
R. M.
,
Luan
,
X. Y.
, and
Kang
,
B. P.
,
2018
, “
An Experimental Investigation of Cooling Characteristics at a Vane End-Wall With a Locally Enhanced Hole-Layout
,”
Exp. Therm. Fluid Sci.
,
96
(
9
), pp.
137
145
.
17.
Li
,
X. Y.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2015
, “
Film Cooling Effectiveness Distribution of Cylindrical Hole Injections at Different Locations on a Vane Endwall
,”
Int. J. Heat Mass Transfer
,
90
(
11
), pp.
1
14
.
18.
Yang
,
X.
,
Zhao
,
Q.
,
Wu
,
H.
, and
Feng
,
Z. P.
,
2020
, “
Investigations on Cooling Hole Patterns Over a Turbine Endwall for Improving Cooling Effectiveness
,” ASME Paper No. GT2022-82799.
19.
Yang
,
X.
,
Liu
,
Z.
,
Zhao
,
Q.
, and
Simon
,
T. W.
,
2020
, “
Comparisons of Endwall Overall Effectiveness From Two Film Hole Distribution Patterns at Low and High Exit Mach Numbers
,”
ASME J. Turbomach.
,
142
(
10
), p.
101007
.
20.
Wang
,
W.
,
Pu
,
J.
,
Wang
,
J.
,
Wu
,
W.
, and
Wang
,
M.
,
2019
, “
An Experimental Investigation on Cooling Characteristics of a Vane Laminated End-Wall With Axial-Row Layout of Film-Holes
,”
Appl. Therm. Eng.
,
148
(
2
), pp.
953
962
.
21.
Li
,
Y. F.
,
Zhang
,
Y.
,
Su
,
X. R.
, and
Yuan
,
X.
,
2018
, “
Experimental and Numerical Investigations of Shaped Hole Film Cooling With the Influence of Endwall Cross Flow
,”
Int. J. Heat Mass Transfer
,
120
(
5
), pp.
42
55
.
22.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2005
, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film-Cooled Endwall
,”
ASME J. Turbomach.
,
128
(
1
), pp.
43
52
.
23.
Yang
,
X.
,
Zhao
,
Q.
, and
Feng
,
Z. P.
,
2022
, “
Experimental Evaluation of Cooling Effectiveness From Novel Film Holes Over Turbine Endwalls With Inlet Swirl
,”
Int. J. Therm. Sci.
,
174
(
4
), p.
107434
.
24.
Colban
,
W.
, and
Thole
,
K.
,
2007
, “
Influence of Hole Shape on the Performance of a Turbine Vane Endwall Film-Cooling Scheme
,”
Int. J. Heat Fluid Flow
,
28
(
3
), pp.
341
356
.
25.
Gao
,
Z.
,
Narzary
,
D.
, and
Han
,
J. C.
,
2009
, “
Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041001
.
26.
Zhang
,
W. X.
,
Li
,
F.
,
Xie
,
Y. H.
,
Ding
,
Y. Q.
,
Liu
,
Z.
, and
Feng
,
Z. P.
,
2023
, “
Experimental and Numerical Investigations of Discrete Film Holes Cooling Performance on a Blade Endwall With Mid-Passage Gap Leakage
,”
Int. J. Heat Mass Transfer
,
201
(
10
), p.
123550
.
27.
Wu
,
H.
,
Yang
,
X.
,
Wu
,
Y. Q.
, and
Feng
,
Z. P.
,
2023
, “
Experimental Decoupled-Analysis of Overall Cooling Effectiveness for a Turbine Endwall With Internal and External Cooling Configurations
,”
Appl. Therm. Eng.
,
228
(
6
), p.
120435
.
28.
Yang
,
X.
,
Zhao
,
Q.
,
Wu
,
H.
,
Hao
,
Z. H.
, and
Feng
,
Z. P.
,
2022
, “
Heat Transfer Measurements of a Turbine Endwall With Engine-Representative Freestream Turbulence and Inlet Swirl
,”
Exp. Heat Transfer
,
35
(
5
), pp.
653
673
.
29.
Yang
,
X.
,
Liu
,
Z. S.
,
Zhao
,
Q.
,
Liu
,
Z.
,
Feng
,
Z. P.
,
Guo
,
F.
,
Ding
,
L.
, and
Simon
,
T. W.
,
2019
, “
Conjugate Heat Transfer Measurements and Predictions for the Vane Endwall of a High-Pressure Turbine With Upstream Purge Flow
,”
Int. J. Heat Mass Transfer
,
140
(
9
), pp.
634
647
.
30.
Yang
,
X.
,
Liu
,
Z. S.
,
Zhao
,
Q.
,
Liu
,
Z.
,
Feng
,
Z. P.
,
Guo
,
F.
,
Ding
,
L.
, and
Simon
,
T. W.
,
2018
, “
Experimental and Numerical Investigations of Overall Cooling Effectiveness on a Vane Endwall With Jet Impingement and Film Cooling
,”
Appl. Therm. Eng.
,
148
(
2
), pp.
1148
1163
.
31.
Mensch
,
A.
,
Thole
,
K. A.
, and
Craven
,
B. A.
,
2014
, “
Conjugate Heat Transfer Measurements and Predictions of a Blade Endwall With a Thermal Barrier Coating
,”
ASME J. Turbomach.
,
136
(
12
), p.
121003
.
You do not currently have access to this content.