Abstract

In this paper, for the first time, a novel design of pulsating heat pipe (PHP) with one evaporator and two condensers located on both sides of the evaporator at an angle to the horizon was proposed, manufactured, and experimentally investigated for the purpose of use in cooling systems for electronic devices operating in a tilted position. The PHP body is made of a copper capillary tube with an inner diameter of 1.5 mm. The working fluid is methanol. The number of turns is 4. The heating zone dimensions are 60 mm × 36 mm, and the cooling zone dimensions are 200 mm × 35 mm. The РНР condensers were cooled by aluminum radiators blown by two fans with an air flowrate of 5.2 m3 h–1. The launch of the РНР began with a power of 30 W at all positive tilt angles and in a horizontal position. The dependences of the temperature in the heating and cooling zones and the PHP thermal resistance both on the power input (from 30 W to 200 W) and on the orientation in space (at tilt angles of 0 deg, 15 deg, 30 deg, 60 deg, 90 deg) were obtained. It is shown that when the evaporator is located below the condensers, the РНР works stably. Moreover, in the power range from 120 W to 200 W, the tilt angle practically does not affect the thermal resistance of the PHP. A comparison of the thermal resistance of the developed РНР with known РНРs filled with methanol showed the high efficiency of the developed РНР: at power input from 120 W to 200 W, the thermal resistance was from 0.2 °С W–1 to 0.18 °С W–1. The developed РНР design is promising for use in air cooling systems, for instance, of radar transmit/receive modules and high-power LED lighting systems.

References

1.
Bar-Cohen
,
A.
,
2013
, “
Gen-3 Thermal Management Technology: Role of Microchannels and Nanostructures in an Embedded Cooling Paradigm
,”
ASME J. Nanotechnol. Eng. Med.
,
4
(
2
), p.
020907
.
2.
Lakshminarayanan
,
V.
, and
Sriraam
,
N.
,
2014
, “
The Effect of Temperature on the Reliability of Electronic Components
,”
2014 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)
,
Bangalore, India
,
Feb. 17
, pp.
1
6
.
3.
Sun
,
B.
, and
Liu
,
H.
,
2017
, “
Flow and Heat Transfer Characteristics of Nanofluids in a Liquid-Cooled CPU Heat Radiator
,”
Appl. Therm. Eng.
,
115
, pp.
435
443
.
4.
Pekur
,
D. V.
,
Kolomzarov
,
Y. V.
,
Sorokin
,
V. M.
, and
Nikolaenko
,
Y. E.
,
2022
, “
Super Powerful LED Luminaires With a High Color Rendering Index for Lighting Systems With Combined Electric Power Supply
,”
Semicond. Phys. Quantum Electron. Optoelectron.
,
25
(
1
), pp.
97
107
.
5.
Nikolaenko
,
Y. E.
,
Kravets
,
V. Y.
,
Melnyk
,
R. S.
,
Pekur
,
D. V.
,
Kozak
,
D. V.
,
Solomakha
,
A. S.
, and
Lipnitskyi
,
L. V.
,
2022
, “
Increasing Performance of Cooling Systems for Radar Transmit/Receive Modules
,”
2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO)
.
Oct. 10–14
,
IEEE Ukraine Section, Igor Sikorsky Kyiv Polytechnic Institute
,
Kyiv, Ukraine
, pp.
634
639
.
6.
Reay
,
D. A.
,
Kew
,
P. A.
, and
McGlen
,
R. J.
,
2014
,
Heat Pipe: Theory, Design and Applications
, 6th ed.,
Buterworth-Heinemann
,
Oxford
.
7.
Faghri
,
A.
,
2012
, “
Review and Advances in Heat Pipe Science and Technology
,”
ASME J. Heat Transfer
,
134
(
12
), p.
123001
.
8.
Aslan
,
Y.
,
Kiper
,
C. E.
,
van den Biggelaar
,
A. J.
,
Johannsen
,
U.
, and
Yarovoy
,
A.
,
2019
, “
Passive Cooling of mm-Wave Active Integrated 5G Base Station Antennas Using CPU Heatsinks
,”
2019 16th European Radar Conference (EuRAD)
,
Paris, France
,
Oct. 2–4
, pp.
121
124
.
9.
Merjvinsky
,
P.
,
Nikolaenko
,
J.
, and
Osinsky
,
V.
,
2001
, “
Features of Thermal Processes in Microlaser Devices
,”
Proc. SPIE 4425, Selected Papers From the International Conference on Optoelectronic Information Technologies
,
Vinnytsia, Ukraine
,
June 12
, pp.
431
438
.
10.
Shu
,
S.
,
Hou
,
G.
,
Wang
,
L.
,
Tian
,
S.
,
Vassiliev
,
L. L.
, and
Tong
,
C.
,
2017
, “
Heat Dissipation in Highpower Semiconductor Lasers With Heat Pipe Cooling System
,”
J. Mech. Sci. Technol.
,
31
(
6
), pp.
2607
2612
.
11.
Nikolaenko
,
Y. E.
,
Baranyuk
A. V.
,
Reva
,
S. A.
,
Pis′mennyi
,
E. N.
,
Dubrovka
,
F. F.
, and
Rohachov
,
V. A.
,
2019
, “
Improving Air Cooling Efficiency of Transmit/Receive Modules Through Using Heat Pipes
,”
Ther. Sci. Eng. Prog.
,
14
, p.
100418
.
12.
Qian
,
C.
,
Gheitaghy
,
A. M.
,
Fan
,
J.
,
Tang
,
H.
,
Sun
,
B.
,
Ye
,
H.
, and
Zhang
,
G.
,
2018
, “
Thermal Management on IGBT Power Electronic Devices and Modules
,”
IEEE Access
,
6
, pp.
12868
12884
.
13.
Kozak
,
D. V.
, and
Nikolaenko
,
Y. E.
,
2016
, “
The Working Characteristics of Two-Phase Heat Transfer Devices for LED Modules
,”
2016 International Conference on Electronics and Information Technology (EIT)
,
Odessa, Ukraine
,
May 23–27
, pp.
1
4
.
14.
Baturkin
,
V.
,
Feidelheimer
,
V.
,
Sasaki
,
K.
,
Mikulz
,
E.
, and
Ho
,
T.
,
2020
, “
Regulative Characteristic of Methanol–Copper Heat Pipes for Asteroid Lander ‘MASCOT’
,”
ASME. J. Heat Transfer
,
142
(
5
), p.
051801
.
15.
Marchenko
,
O.
,
Prisniakov
,
K.
,
Prisniakov
,
V.
,
Kravez
,
V.
, and
Nikolaenko
,
Y.
,
2004
, “
Influence of Non-Stationary Conditions on Reliability of Space Systems With Heat Pipes Under the Effect of Vibrations
,”
55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, International Astronautical Congress (IAF)
.
Vancouver, British Columbia, Canada
,
Oct. 4–8
,
4
, pp.
2301
2311
.
16.
Mochizuki
,
M.
,
Nguyen
,
T.
,
Mashiko
,
K.
,
Saito
,
Y.
,
Nguyen
,
T.
, and
Wuttijumnong
,
V.
,
2011
, “
A Review of Heat Pipe Application Including New Opportunities
,”
Front. Heat Pipes
,
2
(
1
), p.
013001
.
17.
Nikolaienko
,
Y. E.
,
2005
, “
Schematics of the Architecture of Heat Rejection From Functional Modules of a Computer With the Help of Two-Phase Heat-Transfer Devices
,”
Upravlyayushchie Sistemy i Mashiny
,
2
(
2
), pp.
29
36
.
18.
Saad
,
I.
,
Maalej
,
S.
, and
Zaghdoudi
,
M. C.
,
2022
, “
Investigation of the Thermal Performance of a Nanofluid-Filled Grooved Cylindrical Heat Pipe for Electronics Cooling
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
99
(
2
), pp.
135
154
.
19.
Xu
,
Z.
,
2022
, “
Thermal Performance and Multi-Objective Optimization of Thermosyphon Heat Sinks With Rectangular Radial Fins for High Power LED Lamps Cooling
,”
Case Stud. Therm. Eng.
,
30
, p.
101778
.
20.
Manova
,
S.
,
Asirvatham
,
L. G.
,
Appadurai
,
A. A.
,
Ribatski
,
G.
,
Kumar
,
P.
, and
Wongwises
,
S.
,
2022
, “
An Experimental Investigation on the Heat Transfer Characteristics of Minichannel Thermosyphon With Multiports for Cooling the Modern Miniaturized Electronic Devices
,”
Energy Convers. Manage.
,
268
, p.
115997
.
21.
Weng
,
H. C.
, and
Yang
,
M.-H.
,
2018
, “
Heat Transfer Performance Enhancement of Gravity Heat Pipes by Growing AAO Nanotubes on Inner Wall Surface
,”
Inventions
,
3
(
3
), p.
42
.
22.
Nikolaenko
,
Y. E.
,
Pekur
,
D. V.
,
Sorokin
,
V. M.
,
Кravets
,
V. Y.
,
Melnyk
,
R. S.
,
Lipnitskyi
,
L. V.
, and
Solomakha
,
A. S.
,
2021
, “
Experimental Study on Characteristics of Gravity Heat Pipe With Threaded Evaporator
,”
Ther. Sci. Eng. Prog.
,
26
, p.
101107
.
23.
Attia
,
A. A. A.
,
El-Nagar
,
K. H.
, and
El-Ghnam
,
R. I.
,
2009
, “
An Experimental Study on the Effect of Internal Helical Groove With Different Pitches on Heat Pipe Performance
,”
Ain Shams J. Mech. Eng.
,
2
, pp.
129
138
.
24.
Pekur
,
D. V.
,
Sorokin
,
V. M.
, and
Nikolaenko
,
Y. E.
,
2021
, “
Features of Wall-Mounted Luminaires With Different Types of Light Sources
,”
Electrica
,
21
(
1
), pp.
32
40
.
25.
Akachi
,
H.
(
1990
). “Structure of a Heat Pipe,” U.S. Patent No. US4921041A.
26.
Khandekar
,
S.
,
2004
, “
Thermo-Hydrodynamics of Closed Loop Pulsating Heat Pipes
,”
Ph.D. dissertation
,
Institut fur Kernenergetik und Energiesysteme der Universitat Stuttgart
,
Stuttgart, Germany
.
27.
Riehl
,
R. R.
, and
dos Santos
,
N.
,
2012
, “
Water-Copper Nanofluid Application in an Open Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
42
, pp.
6
10
.
28.
Iwata
,
N.
,
Saitoh
,
M.
,
Yanagase
,
K.
,
Iso
,
Y.
,
Inoue
,
Y.
,
Ogawa
,
H.
, and
Miyazaki
,
Y.
,
2022
, “
Thermal and Structural Performance of a Small Satellite With Networked Oscillating Heat Pipes
,”
J. Spacecr. Rockets
,
59
(
3
), pp.
1016
1028
.
29.
Riehl
,
R. R.
,
2019
, “
Thermal Enhancement Using Nanofluids on High Heat Dissipation Electronic Components
,”
J. Nanofluids
,
8
(
1
), pp.
30
40
.
30.
Jongwook Choi
,
J.
, and
Zhang
,
Y.
,
2020
, “
Numerical Simulation of Oscillatory Flow and Heat Transfer in Pulsating Heat Pipes With Multi-Turns Using OpenFOAM
,”
Numer. Heat Transfer, Part A
,
77
(
8
), pp.
761
781
.
31.
Nikolayev
,
V.
,
2021
, “
Physical Principles and State-of-the-art of Modeling of the Pulsating Heat Pipe: A Review
,”
Appl. Therm. Eng.
,
195
, p.
117111
.
32.
Guowei
,
X.
,
Hao
,
L.
,
Shun
,
Z.
, and
Yecong
,
H.
,
2022
, “
Influence of Drainage and Tilt on Heat Transfer Performance of Array Pulsating Cold End Heat Pipe
,”
ASME. J. Thermal Sci. Eng. Appl.
,
14
(
9
), p.
091003
.
33.
Liu
,
X.
,
Sun
,
Q.
,
Zhang
,
C.
, and
Wu
,
L.
,
2016
, “
High-Speed Visual Analysis of Fluid Flow and Heat Transfer in Oscillating Heat Pipes With Different Diameters
,”
Appl. Sci.
,
6
(
11
), p.
321
.
34.
Karthikeyan
,
V. K.
,
Ramachandran
,
K.
,
Pillai
,
B. C.
, and
Brusly Solomon
,
A
,
2015
, “
Understanding Thermo-Fluidic Characteristics of a Glass Tube Closed Loop Pulsating Heat Pipe: Flow Patterns and Fluid Oscillations
,”
Heat Mass Transfer
,
51
(
12
), pp.
1669
1680
.
35.
Shang
,
F.
,
Fan
,
S.
,
Yang
,
Q.
, and
Liu
,
J.
,
2020
, “
An Experimental Investigation on Heat Transfer Performance of Pulsating Heat Pipe
,”
J. Mech. Sci. Technol.
,
34
(
1
), pp.
425
433
.
36.
Zhang
,
D.
,
Li
,
H.
,
Wu
,
J.
,
Li
,
Q.
,
Xu
,
B.
, and
An
,
Z.
,
2022
, “
Experimental Study on the Effect of Inclination Angle on the Heat Transfer Characteristics of Pulsating Heat Pipe Under Variable Heat Flux
,”
Energies
,
15
(
21
), p.
8252
.
37.
Pouryoussefi
,
S. M.
, and
Zhang
,
Y.
,
2018
, “Chaos in Pulsating Heat Pipes (Chapter 5),”
Heat Pipes: Design, Application, and Technology
,
Y.
Zhang
, ed.,
Nova Science Publisher, Inc
,
New York
, pp.
309
364
.
38.
Lin
,
L.
,
Ponnappan
,
R.
, and
Leland
,
J.
,
2001
, “
Experimental Investigation of Oscillating Heat Pipes
,”
J. Thermophys. Heat Transfer
,
15
(
4
), pp.
395
400
.
39.
Cai
,
Q.
,
Chen
,
R. L.
, and
Chen
,
C. L.
,
2002
, “
An Investigation of Evaporation, Boiling, and Heat Transport Performance In Pulsating Heat Pipe
,”
Proceedings of IMECE ASME International Mechanical Engineering Congress & Exposition
,
New Orleans, LA, Nov. 17–22
, IMECE 2002–33334, pp.
99
104
.
40.
Torresin
,
D.
,
Agostini
,
F.
,
Mularczyk
,
A.
,
Agostini
,
B.
, and
Habert
,
M.
,
2017
, “
Double Condenser Pulsating Heat Pipe Cooler
,”
Appl. Therm. Eng.
,
126
, pp.
1051
1057
.
41.
Stevens
,
K. A.
,
Smith
,
S. M.
, and
Taft
,
B. S.
,
2019
, “
Variation in Oscillating Heat Pipe Performance
,”
Appl. Therm. Eng.
,
149
, pp.
987
995
.
42.
Chen
,
X.
,
Chen
,
S.
,
Zhang
,
Z.
,
Sun
,
D.
, and
Liu
,
X.
,
2021
, “
Heat Transfer Investigation of a Flat-Plate Oscillating Heat Pipe With Tandem Dual Channels Under Nonuniform Heating
,”
Int. J. Heat Mass Transfer
,
180
, p.
121830
.
43.
Chen
,
X.
,
Liu
,
X.
,
Xu
,
D.
, and
Chen
,
Y.
,
2022
, “
Thermal Performance of a Tandem-Dual-Channel Flat-Plate Pulsating Heat Pipe Applicable to Hypergravity
,”
Int. J. Heat Mass Transfer
,
189
, p.
122656
.
44.
Schwarz
,
F.
,
Uddehal
,
S. R.
,
Lodermeyer
,
A.
,
Bagheri
,
E. M.
,
Forster-Heinlein
,
B.
, and
Becker
,
S.
,
2021
, “
Interaction of Flow Pattern and Heat Transfer in Oscillating Heat Pipes for Hot Spot Applications
,”
Appl. Therm. Eng.
,
196
, p.
117334
.
45.
Dreiling
,
R.
,
Zimmermann
,
S.
,
Nguyen-Xuan
,
T.
,
Schreivogel
,
P.
, and
di Mare
,
F.
,
2022
, “
Thermal Resistance Modeling of Flat Plate Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
189
, p.
122668
.
46.
Dreiling
,
R.
,
Zimmermann
,
S.
,
Reibstirn
,
M.
,
Nguyen-Xuan
,
T.
,
Schreivogel
,
P.
, and
di Mare
,
F.
,
2023
, “
Experimental Operating Range Evaluation of Flat-Plate Pulsating Heat Pipes for High-Heat Flux Automotive Power Electronics Cooling
,”
Appl. Therm. Eng.
,
226
, p.
120338
.
47.
Nikolaenko
,
Y. E.
,
Pekur
,
D. V.
,
Kravets
,
V. Y.
,
Sorokin
,
V. M.
,
Kozak
,
D. V.
,
Melnyk
,
R. S.
,
Lipnitskyi
,
L. V.
, and
Solomakha
,
A. S.
,
2022
, “
Study on the Performance of the Low-Cost Cooling System for Transmit/Receive Module and Broadening the Exploitative Capabilities of the System Using Gravity Heat Pipes
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
12
), p.
121001
.
48.
Cai
,
S. Q.
,
Bhunia
,
A.
, and
Asfia
,
J. F.
,
2017
, “
A Passive and Remote Heat Transfer Solution for Avionics Thermal Management
,”
ASME. J. Thermal Sci. Eng. Appl.
,
9
(
2
), p.
021009
.
49.
Wits
,
W. W.
,
Groeneveld
,
G.
, and
van Gerner
,
H. J.
,
2019
, “
Experimental Investigation of a Flat-Plate Closed-Loop Pulsating Heat Pipe
,”
ASME J. Heat Transfer
,
141
(
9
), p.
091807
.
50.
Dhingra
,
D.
,
2014
,
Thermo-Physical Property Models and Effect on Heat Pipe Modelling
,
All Theses
,
Clemson University
, p.
2052
, https://tigerprints.clemson.edu/all_theses/2052
51.
Liu
,
X.
,
Chen
,
Y.
, and
Shi
,
M.
,
2013
, “
Dynamic Performance Analysis on Start-Up of Closed-Loop Pulsating Heat Pipes (CLPHPs)
,”
Int. J. Therm. Sci.
,
65
, pp.
224
233
.
52.
Taft
,
B. S.
,
Williams
,
A. D.
, and
Drolen
,
B. L.
,
2012
, “
Review of Pulsating Heat Pipe Working Fluid Selection
,”
J. Thermophys. Heat Transfer
,
26
(
4
), pp.
651
656
.
53.
Zhang
,
Y.
, and
Faghri
,
A.
,
2008
, “
Advances and Unsolved Issues in Pulsating Heat Pipes
,”
Heat Transfer Eng.
,
29
(
1
), pp.
20
44
.
54.
Mameli
,
М
,
Manno
,
V.
,
Filippeschi
,
S.
, and
Marengo
,
M.
,
2013
, “
Effect of Gravity on the Thermal Instability of a Closed Loop Pulsating Heat Pipe
,”
8th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics
, Lisbon, Portugal,
June 16–20
, pp.
1
6
,
55.
Lin
,
Y.H.
,
Kang
,
S.W.
, and
Wu
,
T.Y.
,
2009
, “
Fabrication of Polydimethylsiloxane (PDMS) Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
29
(
2-3
), рр.
573
580
.
56.
Moffat
,
J. R.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
57.
Markal
,
B.
, and
Varol
,
R.
,
2021
, “
Experimental Investigation and Force Analysis of Flat-Plate Type Pulsating Heat Pipes Having Ternary Mixtures
,”
Int. Commun. Heat Mass Transfer
,
121
, p.
105084
.
58.
Srikrishna
,
P.
,
Siddharth
,
N.
,
Reddy
,
S. U. M.
, and
Narasimham
,
G. S. V. L.
,
2019
, “
Experimental Investigation of Flat Plate Closed Loop Pulsating Heat Pipe
,”
Heat Mass Transfer
,
55
(
9
), pp.
2637
2649
.
59.
Bastakoti
,
D.
,
Zhang
,
H.
,
Cai
,
W.
, and
Li
,
F.
,
2018
, “
An Experimental Investigation of Thermal Performance of Pulsating Heat Pipe With Alcohols and Surfactant Solutions
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1032
1040
.
60.
Patel
,
V. M.
,
Gaurav
, and
Mehta
,
H. B.
,
2017
, “
Influence of Working Fluids on Startup Mechanism and Thermal Performance of a Closed Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
110
, pp.
1568
1577
.
61.
Rahman
,
M. L.
,
Mira
,
F.
,
Nawrina
,
S.
,
Sultan
,
R. A.
, and
Ali
,
M.
,
2015
, “
Effect of Fin and Insert on the Performance Characteristics of Open Loop Pulsating Heat Pipe (OLPHP)
,”
Procedia Eng.
,
105
, pp.
105
112
.
62.
Chen
,
K.-L.
,
Luo
,
K.-Y.
,
Gupta
,
P. P.
, and
Kang
,
S.-W.
,
2023
, “
SLM Additive Manufacturing of Oscillating Heat Pipe
,”
Sustainability
,
15
(
9
), p.
7538
.
63.
Cui
,
X.
,
Zhu
,
Y.
,
Li
,
Z.
, and
Shun
,
S.
,
2014
, “
Combination Study of Operation Characteristics and Heat Transfer Mechanism for Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
65
, pp.
394
402
.
64.
Pachghare
,
P. R.
, and
Mahalle
,
A. M.
,
2013
, “
Effect of Pure and Binary Fluids on Closed Loop Pulsating Heat Pipe Thermal Performance
,”
Procedia Eng.
,
51
, pp.
624
629
.
65.
Shi
,
S.
,
Cui
,
X.
,
Han
,
H.
,
Weng
,
J.
, and
Li
,
Z.
,
2016
, “
A Study of the Heat Transfer Performance of a Pulsating Heat Pipe With Ethanol-Based Mixtures
,”
Appl. Therm. Eng.
,
102
, pp.
1219
1227
.
66.
Burban
,
G.
,
Ayel
,
V.
,
Alexandre
,
A.
,
Lagonotte
,
P.
,
Bertin
,
Y.
, and
Romestant
,
C.
,
2013
, “
Experimental Investigation of a Pulsating Heat Pipe for Hybrid Vehicle Applications
,”
Appl. Therm. Eng.
,
50
, pp.
94
103
.
67.
Nikolaenko
,
Y. E.
,
Pis'mennyi
,
E. N.
,
Pekur
,
D. V.
,
Sorokin
,
V. M.
,
Кravets
,
V. Y.
,
Melnyk
,
R. S.
,
Kozak
,
D. V.
, and
Solomakha
,
A. S.
,
2024
, “
The Efficiency of Using Simple Heat Pipes With a Relatively Low Thermal Conductivity for Cooling Transmit/Receive Modules
,”
Appl. Therm. Eng.
, p.
121512
.
68.
Pekur
,
D. V.
,
Sorokin
,
V. M.
,
Nikolaenko
,
Y. E.
,
Kostylyov
,
V. P.
,
Solntsev
,
V. S.
, and
Ponomarenko
,
V. V.
,
2020
, “
Electrooptical Characteristics of an Innovative LED Luminaire With an LED Matrix Cooling System Based on Heat Pipes
,”
Semicond. Phys., Quantum Electron. Optoelectron.
,
23
(
4
), pp.
415
423
.
You do not currently have access to this content.