Abstract

In this work, experiments are conducted with conventional rectangular channels of two different aspect ratios (AR = w/d) for the horizontal boiling flow conditions at atmospheric pressure. Distilled water was used as the working substance. The heat transfer coefficients (HTC) were measured for mass fluxes and heat fluxes ranging from 85.94 kg/m2-s to 343.77 kg/m2-s and 10 kW/m2 to 100 kW/m2, respectively, and at inlet subcooled temperatures of 303 K, 313 K, and 323 K. Visualization of the boiling phenomenon was done using a high-speed camera for the two channels under similar conditions. The results show that the AR has a dominant effect on the HTC. At low heat flux values, higher HTC was noticed for the channel of higher AR (AR = 1.25) whereas, at high heat flux conditions, the HTC is higher for the channel of lower AR (AR = 0.2). With an increase in inlet subcooled temperature, the HTC decreased for both channels due to increased thermal boundary layer thickness and reduced bubble formation. Further, the channel of AR = 1.25 with ribs/fins performed better than the smooth channel due to the high bubble nucleation rate.

References

1.
Balasubramanian
,
K. R.
,
Krishnan
,
R. A.
, and
Suresh
,
S.
,
2018
, “
Spatial Orientation Effects on Flow Boiling Performances in Open Microchannels Heat Sink Configuration Under a Wide Range of Mass Fluxes
,”
Exp. Therm. Fluid Sci.
,
99
(
7
), pp.
392
406
.
2.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2008
, “
Microchannel Size Effects on Local Flow Boiling Heat Transfer to a Dielectric Fluid
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3724
3735
.
3.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2009
, “
Effects of Channel Dimension, Heat Flux, and Mass Flux on Flow Boiling Regimes in Microchannels
,”
Int. J. Multiphase Flow
,
35
(
4
), pp.
349
362
.
4.
Choi
,
C. W.
,
Yu
,
D. I.
, and
Kim
,
M. H.
,
2011
, “
Adiabatic Two-Phase Flow in Rectangular Microchannels With Different Aspect Ratios : Part I—Flow Pattern, Pressure Drop and Void Fraction
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
616
624
.
5.
Choi
,
C. W.
,
Yu
,
D. I.
, and
Kim
,
M. H.
,
2010
, “
Adiabatic Two-Phase Flow in Rectangular Microchannels With Different Aspect Ratios : Part II—Bubble Behaviors and Pressure Drop in Single Bubble
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5242
5249
.
6.
Markal
,
B.
,
Aydin
,
O.
, and
Avci
,
M.
,
2016
, “
Effect of Aspect Ratio on Saturated Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
93
, pp.
130
143
.
7.
Candan
,
A.
,
Markal
,
B.
,
Aydin
,
O.
, and
Avci
,
M.
,
2018
, “
Saturated Flow Boiling Characteristics in Single Rectangular Minichannels: Effect of Aspect Ratio
,”
Exp. Heat Transfer
,
31
(
6
), pp.
531
551
.
8.
Singh
,
S. G.
,
Kulkarni
,
A.
,
Duttagupta
,
S. P.
,
Puranik
,
B. P.
, and
Agrawal
,
A.
,
2008
, “
Impact of Aspect Ratio on Flow Boiling of Water in Rectangular Microchannels
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
153
160
.
9.
Soupremanien
,
U.
,
Person
,
S. L.
,
Favre-Marinet
,
M.
, and
Bultel
,
Y.
,
2011
, “
Influence of the Aspect Ratio on Boiling Flows in Rectangular Mini-Channels
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
797
809
.
10.
Wang
,
Y.
, and
Sefiane
,
K.
,
2012
, “
Effects of Heat Flux, Vapour Quality, Channel Hydraulic Diameter on Flow Boiling Heat Transfer in Variable Aspect Ratio Micro-Channels Using Transparent Heating
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2235
2243
.
11.
Fu
,
B. R.
,
Lee
,
C. Y.
, and
Pan
,
C.
,
2013
, “
The Effect of Aspect Ratio on Flow Boiling Heat Transfer of HFE-7100 in a Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
53
61
.
12.
Cheng
,
L.
, and
Chen
,
T.
,
2001
, “
Flow Boiling Heat Transfer in a Vertical Spirally Internally Ribbed Tube
,”
Heat Mass Transfer
,
37
(
2–3
), pp.
229
236
.
13.
Lingjian
,
K.
,
Zhigang
,
L.
,
Lei
,
J.
,
Mingming
,
L.
, and
Ying
,
L.
,
2020
, “
Experimental Study on Flow and Heat Transfer Characteristics at Onset of Nucleate Boiling in Micro Pin Fin Heat Sinks
,”
Exp. Therm. Fluid Sci.
,
115
(
10
), p.
109946
.
14.
Maddox
,
D. E.
, and
Mudawwar
,
I.
,
1988
, “
Single and Two-Phase Convective Heat Transfer From Smooth and Enhanced Microelectronic Heat Sources in a Rectangular Channel
,”
ASME Heat Transf. Div.
,
96
(
8
), pp.
533
541
.
15.
Jeyaraj
,
T.
, and
Pankaj
,
K.
,
2022
, “
Numerical Investigation of Flow Boiling Characteristics of Water in a Rectangular Microchannel
,”
J. Therm. Anal. Calorim.
,
147
(
1
), pp.
579
598
.
16.
Braz Filho
,
F. A.
,
Ribeiro
,
G. B.
, and
Caldeira
,
A. D.
,
2016
, “
Prediction of Subcooled Flow Boiling Characteristics Using Two-Fluid Eulerian CFD Model
,”
Nucl. Eng. Des.
,
308
(
11
), pp.
30
37
.
17.
Owoeye
,
E. J.
, and
Schubring
,
D.
,
2016
, “
CFD Analysis of Bubble Microlayer and Growth in Subcooled Flow Boiling
,”
Nucl. Eng. Des.
,
304
(
5
), pp.
151
165
.
18.
Qi
,
D.
,
He
,
J.
,
Xu
,
Y.
,
Lin
,
M.
, and
Wang
,
Q.
,
2022
, “
Effect of Rib Diameter on Flow Boiling Heat Transfer With Staggered Rib Arrays in a Heat Sink
,”
Energy
,
239
(
10
), p.
122323
.
19.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
20.
Liu
,
Z.
, and
Winterton
,
L.
,
1991
, “
A General Correlation for Saturated and Subcooled Flow Boiling in Tubes and Annuli, Based on a Nucleate Pool Boiling Equation
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2759
2766
.
21.
Krishnegowda
,
M.
, and
Alangar
,
S.
,
2022
, “
Experimental Investigation on Flow Boiling Characteristics of the Ethanol–Water Mixture in Conventional Channels
,”
Heat Mass Transfer
,
59
(
5
), pp.
779
802
.
22.
Megahed
,
A.
,
2012
, “
Local Flow Boiling Heat Transfer Characteristics in Silicon Microchannel Heat Sinks Using Liquid Crystal Thermography
,”
Int. J. Multiphase Flow
,
39
, pp.
55
65
.
23.
Deng
,
D.
,
Wan
,
W.
,
Shao
,
H.
,
Tang
,
Y.
,
Feng
,
J.
, and
Zeng
,
J.
,
2015
, “
Effects of Operation Parameters on Flow Boiling Characteristics of Heat Sink Cooling Systems With Reentrant Porous Microchannels
,”
Energy Convers. Manage.
,
96
(
3
), pp.
340
351
.
24.
Chakraborty
,
S.
,
Sahu
,
O.
, and
Das
,
K.
,
2016
, “
Flow Boiling in a Heat Sink Embedded With Hexagonally Linked Minichannels
,”
ASME J. Heat Transfer
,
138
(
8
), p.
081504
.
25.
Aydin
,
O.
,
Avci
,
M.
,
Markal
,
B.
, and
Yusuf Yazici
,
M.
,
2014
, “
An Experimental Study on the Decaying Swirl Flow in a Tube
,”
Int. Commun. Heat Mass Transfer
,
55
, pp.
22
28
.
26.
Suhas
,
B. G.
, and
Sathyabhama
,
A.
,
2018
, “
Experimental Study on Forced Convective and Subcooled Flow Boiling Heat Transfer Coefficient of Water-Ethanol Mixtures: An Application in Cooling of Heat Dissipative Devices
,”
Heat Mass Transfer
,
54
(
2
), pp.
277
290
.
27.
Lazarek
,
G. M.
, and
Black
,
S. H.
,
1982
, “
Evaporative Heat Transfer, Pressure Drop and Critical Heat Flux in a Small Vertical Tube With R-113
,”
Int. J. Heat Mass Transfer
,
25
(
7
), pp.
945
960
.
28.
Sinha
,
G. K.
,
Mahimkar
,
S.
, and
Srivastava
,
A.
,
2019
, “
Schlieren-Based Simultaneous Mapping of Bubble Dynamics and Temperature Gradients in Nucleate Flow Boiling Regime: Effect of Flow Rates and Degree of Subcooling
,”
Exp. Therm. Fluid Sci.
,
104
(
2
), pp.
238
257
.
You do not currently have access to this content.