Abstract

Predicting heat transfer mechanisms through solids and fluids is a continuously demanding research topic since accurate and fast temperature calculation is crucial in many engineering and industrial applications. This article presents a new model to calculate the temperature variation of solids and fluids instantly, in less than 0.04 s, for the whole simulation period based on a novel computational framework of deep learning. The partial differential equation, such as the heat transfer equation, can be solved directly at any point according to a well-known boundary condition point without the need for domain discretization. Therefore, instant and accurate temperature calculation is achieved with the minimum computational resources. The proposed deep learning model can be applied in many engineering applications and products by using it in online thermal monitoring or digital twin technology. The new model is well validated by comparing the temperature values obtained from the deep learning model with the experimental temperature measurements. Moreover, a computational cost comparison with other numerical models is conducted to prove the high efficiency of the proposed deep learning model.

References

1.
Erchiqui
,
F.
,
Annasabi
,
Z.
,
Kaddami
,
H.
,
Ben Hamou
,
K.
, and
Ngoma
,
G. D.
,
2021
, “
Effect of the Cooling Temperature of a PET Sheet on the Crystallinity and Mould Removal Time for Thermoforming Applications
,”
Can. J. Chem. Eng.
,
99
(
3
), pp.
695
707
.
2.
Abdoh
,
D. A.
,
Zhang
,
Y.
,
Ademiloye
,
A. S.
,
Kodur
,
V. K. R.
, and
Liew
,
K. M.
,
2023
, “
Modeling of Heating and Cooling Behaviors of Laminated Glass Facades Exposed to Fire With Three-Dimensional Flexibilities
,”
Compos. Struct.
,
314
, p.
116961
.
3.
Abdoh
,
D. A.
,
Ademiloye
,
A. S.
, and
Liew
,
K. M.
,
2020
, “
A Meshfree Analysis of the Thermal Behaviors of Hot Surface Glass Pane Subjects to Down-Flowing Water Film via Smoothed Particle Hydrodynamics
,”
Eng. Anal. Bound. Elem.
,
120
, pp.
195
210
.
4.
Abdoh
,
D. A.
,
Ademiloye
,
A. S.
, and
Liew
,
K. M.
,
2020
, “
Modeling Glass Cooling Mechanism With Down-Flowing Water Film via the Smoothed Particle Hydrodynamics
,”
Comput. Methods Appl. Mech. Eng.
,
362
, p.
112839
.
5.
Chahlafi
,
M.
,
Bellet
,
F.
,
Fichot
,
F.
, and
Taine
,
J.
,
2012
, “
Radiative Transfer Within Non Beerian Porous Media With Semitransparent and Opaque Phases in Non Equilibrium: Application to Reflooding of a Nuclear Reactor
,”
Int. J. Heat Mass Transf.
,
55
(
13–14
), pp.
3666
3676
.
6.
Lee
,
J. R.
, and
Yoon
,
H. Y.
,
2017
, “
Multi-Physics Simulation of Nuclear Reactor Core by Coupled Simulation Using CUPID/MASTER
,”
Int. J. Heat Mass Transf.
,
115
, pp.
1020
1032
.
7.
Erchiqui
,
F.
,
Annasabi
,
Z.
, and
Diagne
,
M.
,
2022
, “
Investigation of the Radiofrequency Heating of Anisotropic Dielectric Materials With a Phase Change: Application to Frozen Douglas-Fir and White Oak Woods
,”
Wood Sci. Technol.
,
56
(
1
), pp.
259
283
.
8.
Abdoh
,
D. A.
,
Kodur
,
V. K. R.
, and
Liew
,
K. M.
,
2020
, “
Smoothed Particle Hydrodynamics Modeling of the Thermal Behavior of Double Skin Facades in Fires Considering the Effects of Venetian Blinds
,”
Appl. Math. Model.
,
84
, pp.
357
376
.
9.
Annasabi
,
Z.
, and
Erchiqui
,
F.
,
2020
, “
3D Hybrid Finite Elements for Anisotropic Heat Conduction in a Multi-Material With Multiple Orientations of the Thermal Conductivity Tensors
,”
Int. J. Heat Mass Transf.
,
158
, p.
119795
.
10.
Erchiqui
,
F.
, and
Annasabi
,
Z.
,
2019
, “
3D Hybrid Finite Element Enthalpy for Anisotropic Thermal Conduction Analysis
,”
Int. J. Heat Mass Transf.
,
136
, pp.
1250
1264
.
11.
Abdoh
,
D. A.
,
Yin
,
B. B.
, and
Liew
,
K. M.
,
2021
, “
A Phase-Field Thermomechanical Framework for Modeling Failure and Crack Evolution in Glass Panes Under Fire
,”
Comput. Methods Appl. Mech. Eng.
,
385
, p.
114068
.
12.
Jinasena
,
A.
,
Spitthoff
,
L.
,
Wahl
,
M. S.
,
Lamb
,
J. J.
,
Shearing
,
P. R.
,
Strømman
,
A. H.
, and
Burheim
,
O. S.
,
2022
, “
Online Internal Temperature Sensors in Lithium-Ion Batteries: State-of-the-Art and Future Trends
,”
Front. Chem. Eng.
,
4
, pp.
1
22
.
13.
Wang
,
W.
,
Wang
,
J.
,
Tian
,
J.
,
Lu
,
J.
, and
Xiong
,
R.
,
2021
, “
Application of Digital Twin in Smart Battery Management Systems
,”
Chin. J. Mech. Eng.
,
34
(
1
), pp.
1
19
.
14.
Zohdi
,
T. I.
,
2022
, “
A Digital-Twin and Machine-Learning Framework for Precise Heat and Energy Management of Data-Centers
,”
Comput. Mech.
,
69
(
6
), pp.
1501
1516
.
15.
Zohdi
,
T. I.
,
2021
, “
A Digital-Twin and Machine-Learning Framework for the Design of Multiobjective Agrophotovoltaic Solar Farms
,”
Comput. Mech.
,
68
(
2
), pp.
357
370
.
16.
Seifert
,
J.
,
Haupt
,
L.
,
Schinke
,
L.
,
Perschk
,
A.
,
Hackensellner
,
T.
, and
Wiemann
,
S.
,
2022
, “
Digital Twin for Heat Pump Systems—Description of a Holistic Approach Consisting of Numerical Models and System Platform
,”
REHVA 14th HVAC World Congress
,
Rotterdam. The Netherlands
,
May 22–25
, pp.
1
7
.
17.
Shimamura
,
O.
,
Abe
,
T.
,
Watanabe
,
K.
,
Ohsawa
,
Y.
, and
Horie
,
H.
,
2007
, “
Research and Development Work on Lithium-Ion Batteries for Environmental Vehicles
,”
World Electr. Veh. J.
,
1
(
1
), pp.
251
257
.
18.
Zhang
,
C.
,
Huang
,
J.
,
Sun
,
W.
,
Xu
,
X.
, and
Li
,
Y.
,
2022
, “
Research on the Influence of Liquid on Heat Dissipation and Heating Characteristics of Lithium-Ion Battery Thermal Management System
,”
World Electr. Veh. J.
,
13
(
68
), pp.
1
16
.
19.
Kim
,
Y.
, and
Choi
,
Y.
,
2022
, “
Learning Finite Difference Methods for Reaction-Diffusion Type Equations With FCNN
,”
Comput. Math. Appl.
,
123
, pp.
115
122
.
20.
Aly
,
S. P.
,
Barth
,
N.
,
Figgis
,
B. W.
, and
Ahzi
,
S.
,
2018
, “
A Fully Transient Novel Thermal Model for In-Field Photovoltaic Modules Using Developed Explicit and Implicit Finite Difference Schemes
,”
J. Comput. Sci.
,
27
, pp.
357
369
.
21.
Krivovichev
,
G. V.
,
2020
, “
Parametric Schemes for the Simulation of the Advection Process in Finite-Difference-Based Single-Relaxation-Time Lattice Boltzmann Methods
,”
J. Comput. Sci.
,
44
, p.
101151
.
22.
Deka
,
B.
, and
Dutta
,
J.
,
2020
, “
Convergence of Finite Element Methods for Hyperbolic Heat Conduction Model With an Interface
,”
Comput. Math. Appl.
,
79
(
11
), pp.
3139
3159
.
23.
Yao
,
X.
,
Wang
,
Y.
, and
Leng
,
J.
,
2021
, “
A General Finite Element Method: Extension of Variational Analysis for Nonlinear Heat Conduction With Temperature-Dependent Properties and Boundary Conditions, and Its Implementation as Local Refinement
,”
Comput. Math. Appl.
,
100
, pp.
11
29
.
24.
Assam
,
A.
, and
Natarajan
,
G.
,
2021
, “
A Novel Least Squares Finite Volume Scheme for Discontinuous Diffusion on Unstructured Meshes
,”
Comput. Math. Appl.
,
96
, pp.
120
130
.
25.
Wu
,
D.
,
Lv
,
J.
, and
Qian
,
H.
,
2022
, “
Parallel Domain Decomposition Schemes Based on Finite Volume Element Discretization for Nonsteady-State Diffusion Equations on Distorted Meshes
,”
Comput. Math. Appl.
,
112
, pp.
97
115
.
26.
Gong
,
Y.
,
Qin
,
F.
,
Dong
,
C.
, and
Trevelyan
,
J.
,
2022
, “
An Isogeometric Boundary Element Method for Heat Transfer Problems of Multiscale Structures in Electronic Packaging With Arbitrary Heat Sources
,”
Appl. Math. Model.
,
109
, pp.
161
185
.
27.
DeSilva
,
S. J.
, and
Chan
,
C. L.
,
2008
, “
Coupled Boundary Element Method and Finite Difference Method for the Heat Conduction in Laser Processing
,”
Appl. Math. Model.
,
32
(
11
), pp.
2429
2458
.
28.
Das
,
R.
, and
Cleary
,
P. W.
,
2016
, “
Three-Dimensional Modelling of Coupled Flow Dynamics, Heat Transfer and Residual Stress Generation in Arc Welding Processes Using the Mesh-Free SPH Method
,”
J. Comput. Sci.
,
16
, pp.
200
216
.
29.
Zhang
,
J.
,
Qi
,
H.
,
Ren
,
Y.
,
Su
,
M.
, and
Cai
,
X.
,
2022
, “
Acoustic Tomography of Temperature and Velocity Fields by Using the Radial Basis Function and Alternating Direction Method of Multipliers
,”
Int. J. Heat Mass Transf.
,
188
, p.
122660
.
30.
Fini
,
S. H. A.
,
Farzaneh
,
M.
, and
Erchiqui
,
F.
,
2015
, “
Study of the Elastic Behaviour of Wood–Plastic Composites at Cold Temperatures Using Artificial Neural Networks
,”
Wood Sci. Technol.
,
49
(
4
), pp.
695
705
.
31.
Erchiqui
,
F.
,
Ozdemir
,
Z.
,
Souli
,
M.
,
Ezzaidi
,
H.
, and
Dituba-Ngoma
,
G.
,
2011
, “
Neural Networks Approach for Characterisation of Viscoelastic Polymers
,”
Can. J. Chem. Eng.
,
89
(
5
), pp.
1303
1310
.
32.
Erchiqui
,
F.
,
2018
, “
Application of Genetic and Simulated Annealing Algorithms for Optimization of Infrared Heating Stage in Thermoforming Process
,”
Appl. Therm. Eng.
,
128
, pp.
1263
1272
.
33.
Cherif
,
K. B.
,
Rebaine
,
D.
,
Erchiqui
,
F.
,
Fofana
,
I.
, and
Nahas
,
N.
,
2018
, “
Numerically Optimizing the Distribution of the Infrared Radiative Energy on a Surface of a Thermoplastic Sheet Surface
,”
ASME J. Heat Transfer.
,
140
(
10
), p.
102101
.
34.
Ghommem
,
M.
,
Puzyrev
,
V.
,
Sabouni
,
R.
, and
Najar
,
F.
,
2022
, “
Deep Learning for Gas Sensing Using MOFs Coated Weakly-Coupled Microbeams
,”
Appl. Math. Model.
,
105
, pp.
711
728
.
35.
Dombi
,
J.
, and
Jónás
,
T.
,
2022
, “
The Generalized Sigmoid Function and Its Connection With Logical Operators
,”
Int. J. Approx. Reason
,
143
, pp.
121
138
.
36.
Qin
,
Z.
,
Qiu
,
Y.
,
Sun
,
H.
,
Lu
,
Z.
,
Wang
,
Z.
,
Shen
,
Q.
, and
Pan
,
H.
,
2020
, “
A Novel Approximation Methodology and Its Efficient VLSI Implementation for the Sigmoid Function
,”
IEEE Trans. Circuits Syst. II Express Briefs
,
67
(
12
), pp.
3422
3426
.
37.
Chen
,
D.
,
Wang
,
Z.
,
Guo
,
D.
,
Orekhov
,
V.
, and
Qu
,
X.
,
2020
, “
Review and Prospect: Deep Learning in Nuclear Magnetic Resonance Spectroscopy
,”
Chem. Eur. J.
,
26
(
46
), pp.
10391
10401
.
38.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
39.
Xu
,
J.
,
Zhang
,
Z.
,
Friedman
,
T.
,
Liang
,
Y.
, and
Van Den Broeck
,
G.
,
2018
, “
A Semantic Loss Function for Deep Learning With Symbolic Knowledge
,”
35th International Conference on Machine Learning (ICML 2018)
,
Stockholm, Sweden
,
July 10–15
, Vol. 12, pp.
8752
8760
.
40.
Wang
,
Y.
,
Wang
,
Q.
,
Shao
,
G.
,
Chen
,
H.
,
Su
,
Y.
,
Sun
,
J.
,
He
,
L.
, and
Liew
,
K. M.
,
2014
, “
Fracture Behavior of a Four-Point Fixed Glass Curtain Wall Under Fire Conditions
,”
Fire Saf. J.
,
67
, pp.
24
34
.
41.
Wang
,
Y.
, and
Hu
,
J.
,
2019
, “
Performance of Laminated Glazing Under Fire Conditions
,”
Compos. Struct.
,
223
, p.
110903
.
42.
Wang
,
Y.
,
Wang
,
Q.
,
Wen
,
J. X.
,
Sun
,
J.
, and
Liew
,
K. M.
,
2017
, “
Investigation of Thermal Breakage and Heat Transfer in Single, Insulated and Laminated Glazing Under Fire Conditions
,”
Appl. Therm. Eng.
,
125
, pp.
662
672
.
43.
Debuyser
,
M.
,
Sjöström
,
J.
,
Lange
,
D.
,
Honfi
,
D.
,
Sonck
,
D.
, and
Belis
,
J.
,
2017
, “
Behaviour of Monolithic and Laminated Glass Exposed to Radiant Heating
,”
Constr. Build. Mater.
,
130
, pp.
212
229
.
44.
Madhukar
,
A.
,
Park
,
Y.
,
Kim
,
W.
,
Sunaryanto
,
H. J.
,
Berlin
,
R.
,
Chamorro
,
L. P.
,
Bentsman
,
J.
, and
Ostoja-Starzewski
,
M.
,
2019
, “
Heat Conduction in Porcine Muscle and Blood: Experiments and Time-Fractional Telegraph Equation Model
,”
J. R. Soc. Interface
,
16
(
160
), p.
20190726
.
45.
Barozzi
,
S.
, and
Risorgimento
,
V.
,
1984
, “
Laminar Heat Transfer to Blood Flowing
,”
Int. J. Heat Mass Transf.
,
27
(
3
), pp.
391
398
.
46.
Gu
,
X. Y.
,
Dong
,
C. Y.
,
Cheng
,
T.
,
Zhang
,
Y.
, and
Bai
,
Y.
,
2016
, “
The Transient Heat Conduction MPM and GIMP Applied to Isotropic Materials
,”
Eng. Anal. Bound. Elem.
,
66
, pp.
155
167
.
You do not currently have access to this content.