Abstract

This study experimentally investigates the small two-phase thermosyphon loop with a minichannel evaporator. The influences of heating power, fan power, and inclination angle on the heat transfer performance are presented, and the related mechanisms are revealed. Results show that the thermal resistance of the thermosyphon loop tends to decrease as the heating power is increased. It is found that there exists an optimal value of fan power. Interestingly, the invalidity behavior of thermosyphon under the inclination condition prefers to occur at higher heating power. To sum up, the small two-phase thermosyphon loop with a minichannel evaporator could produce excellent heat transfer performance with energy-saving characteristics, indicating its wide potential applications in the field of electronic chip cooling.

References

1.
Cao
,
J.
,
Zheng
,
Z.
,
Asim
,
M.
,
Hu
,
M.
,
Wang
,
Q.
,
Su
,
Y.
,
Pei
,
G.
, and
Leung
,
M. K. H.
,
2020
, “
A Review on Independent and Integrated/Coupled Two-Phase Loop Thermosyphons
,”
Appl. Energy
,
280
, p.
115885
.
2.
Agostini
,
F.
,
Gradinger
,
T.
, and
Cottet
,
D.
,
2014
, “
Compact Gravity Driven and Capillary-Sized Thermosyphon Loop for Power Electronics Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
3
), p.
031003
.
3.
Yan
,
Z.
,
Huang
,
H.
, and
Pan
,
Z.
,
2023
, “
Bubble Breakup and Boiling Heat Transfer in Y-Shaped Bifurcating Microchannels
,”
AlChE J.
,
69
(
2
), p.
e17836
.
4.
Matsubara
,
K.
,
Tachikawa
,
S.
,
Kourakata
,
I.
, and
Matsudaira
,
Y.
,
2014
, “
Experiments on Thermosyphon Loops for Low-Temperature Waste-Heat Recovery
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041006
.
5.
Tecchio
,
C.
,
Oliveira
,
J. L. G.
,
Paiva
,
K. V.
,
Mantelli
,
M. B. H.
,
Galdolfi
,
R.
, and
Ribeiro
,
L. G. S.
,
2017
, “
Geyser Boiling Phenomenon in Two-Phase Closed Loop-Thermosyphons
,”
Int. J. Heat Mass Transf.
,
111
, pp.
29
40
.
6.
Elkholy
,
A.
, and
Kempers
,
R.
,
2020
, “
Experimental Investigation of Geyser Boiling in a Small Diameter Two-Phase Loop Thermosyphon
,”
Exp. Therm. Fluid Sci.
,
118
, p.
110170
.
7.
Li
,
F.
,
Gao
,
J.
,
Shi
,
X.
,
Xu
,
L.
, and
Zhu
,
K.
,
2018
, “
Evaluation of R404a Single Loop Thermosyphon for Shaft Cooling in Motorized Spindle
,”
Appl. Therm. Eng.
,
142
, pp.
262
268
.
8.
Ding
,
T.
,
wen Cao
,
H.
,
Guang He
,
Z.
,
da Wu
,
J.
, and
Li
,
Z.
,
2020
, “
Experimental Study on a Loop Thermosyphon Cooling System in Data Centers Using CO2 as a Working Fluid, Especially Thermal Environment and Energy-Saving Effect
,”
Appl. Therm. Eng.
,
175
, p.
115359
.
9.
Cao
,
H.
,
Ding
,
T.
,
He
,
Z.
, and
Li
,
Z.
,
2018
, “
Research on the Refrigerant Column Height in the Downcomer of a Two-Phase Loop Thermosyphon
,”
Int. J. Refrig.
,
94
, pp.
40
48
.
10.
He
,
Y.
,
Hu
,
C.
,
Hu
,
X.
,
Xu
,
H.
, and
Tang
,
D.
,
2023
, “
Assessment of the Two-Phase Thermosyphon Loop With High Filling Ratio Under Anti-Gravity
,”
Int. J. Heat Mass Transf.
,
206
, p.
123968
.
11.
Zhang
,
T.
,
Qu
,
J.
, and
Hua
,
Y.
,
2023
, “
Heat Transfer Characteristics and Operational Visualization of Two-Phase Loop Thermosyphon
,”
Appl. Therm. Eng.
,
228
, p.
101345
.
12.
Cao
,
J.
,
Chen
,
C.
,
Su
,
Y.
,
Leung
,
M. K. H.
,
Bottarelli
,
M.
, and
Pei
,
G.
,
2019
, “
Experimental Study on the Temperature Management Behaviours of a Controllable Loop Thermosyphon
,”
Energy Convers. Manage.
,
195
, pp.
436
446
.
13.
Zhang
,
H.
,
Shao
,
S.
,
Xu
,
H.
, and
Tian
,
C.
,
2019
, “
Experimental Investigation on a Loop Thermosyphon With Three Evaporators: Unique Startup and Oscillation Phenomena
,”
Int. J. Refrig.
,
99
, pp.
363
370
.
14.
Aung
,
N. Z.
, and
Li
,
S.
,
2013
, “
Numerical Investigation on Effect of Riser Diameter and Inclination on System Parameters in a Two-Phase Closed Loop Thermosyphon Solar Water Heater
,”
Energy Convers. Manage.
,
75
, pp.
25
35
.
15.
Wei
,
L.
,
Yuan
,
D.
,
Guo
,
C.
, and
Tang
,
D.
,
2016
, “
Influence of Vapor Bubbles on the Thermal Performance of a Two-Phase Closed Thermosyphon Loop With a Liquid Heat Transfer Agent
,”
Heat Transf. Res.
,
47
(
12
), pp.
1109
1120
.
16.
Louahlia-Gualous
,
H.
,
Le Masson
,
S.
, and
Chahed
,
A.
,
2017
, “
An Experimental Study of Evaporation and Condensation Heat Transfer Coefficients for Looped Thermosyphon
,”
Appl. Therm. Eng.
,
110
, pp.
931
940
.
17.
Vasiliev
,
L.
,
Zhuravlyov
,
A.
,
Kuzmich
,
M.
, and
Kulikouski
,
V.
,
2022
, “
Development and Testing of a Novel Horizontal Loop Thermosyphon as a kW-Class Heat Transfer Device
,”
Appl. Therm. Eng.
,
200
, p.
117682
.
18.
Kumar
,
V.
,
Pathak
,
M.
, and
Khan
,
M. K.
,
2022
, “
Heat Transfer Characteristics of a Closed-Loop Two-Phase Thermosyphon System With a Structured Heating Surface
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
1
), p.
011013
.
19.
Kiseev
,
V.
, and
Sazhin
,
O.
,
2019
, “
Heat Transfer Enhancement in a Loop Thermosyphon Using Nanoparticles/Water Nanofluid
,”
Int. J. Heat Mass Transf.
,
132
, pp.
557
564
.
20.
Jasim
,
A. K.
,
Freegah
,
B.
, and
Alhamdo
,
M. H.
,
2020
, “
Numerical and Experimental Study of a Thermosyphon Closed-Loop System for Domestic Applications
,”
Heat Transf.
,
50
(
1
), pp.
292
312
.
21.
Kuang
,
Y.
,
Yi
,
C.
, and
Wang
,
W.
,
2019
, “
Modeling and Simulation of Large-Scale Separated Heat Pipe With Low Heat Flux for Spent Fuel Pool Cooling
,”
Appl. Therm. Eng.
,
147
, pp.
747
755
.
22.
Tong
,
Z.
,
Wu
,
H.
,
Li
,
X.
, and
Han
,
Z.
,
2023
, “
CFD Simulation on the Operation Characteristics of CO2 Two-Phase Thermosyphon Loop
,”
Appl. Therm. Eng.
,
224
, p.
120103
.
23.
Yan
,
Z.
, and
Pan
,
Z.
,
2020
, “
Dynamics and Phase Change Heat Transfer of an Isolated Vapor Bubble Traveling Through a Heated T-Shaped Branching Microchannel
,”
Int. J. Heat Mass Transf.
,
160
, p.
120186
.
24.
Yue
,
C.
,
Zhang
,
Q.
,
Zhai
,
Z.
,
Wang
,
J.
, and
Ling
,
L.
,
2021
, “
Numerical Study on Flow and Thermal Characteristics of a Micro-Channel Separated Heat Pipe Under Various Surface Wettability
,”
Case Stud. Therm. Eng.
,
28
, p.
101345
.
25.
Yan
,
Z.
,
Li
,
L.
, and
Pan
,
Z.
,
2021
, “
Breakup Regime and Heat Transfer of a Vapor Bubble Within T-Shaped Branching Microchannel
,”
Int. J. Heat Mass Transf.
,
175
, p.
121344
.
26.
Li
,
J.
,
Lin
,
Y.
,
Zhou
,
K.
, and
Li
,
W.
,
2020
, “
Subcooled Flow Boiling on Micro-Porous Structured Copper Surface in a Vertical Mini-Gap Channel
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
6
), p.
061010
.
27.
Qi
,
Z.
,
Jia
,
L.
,
Dang
,
C.
, and
Zhang
,
Y.
,
2022
, “
Liquid Mass Transfer Characteristics of Zeotropic Mixtures of R134a/R245fa During Flow Boiling in a Rectangular Channel
,”
Int. J. Heat Mass Transf.
,
187
, p.
122551
.
28.
Yin
,
L.
,
Jiang
,
P.
,
Xu
,
R.
,
Wang
,
W.
, and
Jia
,
L.
,
2017
, “
Visualization of Flow Patterns and Bubble Behavior During Flow Boiling in Open Microchannels
,”
Int. Commun. Heat Mass Transf.
,
85
, pp.
131
138
.
29.
Na
,
Y. W.
, and
Chung
,
J. N.
,
2018
, “
Numerical Simulation of Forced Convective Boiling in a Microchannel
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041006
.
30.
Chen
,
J.
,
Cai
,
W.
,
Li
,
S.
,
Ren
,
Y.
,
Ma
,
H.
, and
Jiang
,
Y.
,
2018
, “
Numerical Investigation on Saturated Boiling Flow and Heat Transfer of Mixture Refrigerant in a Vertical Rectangular Mini-Channel
,”
Therm. Sci.
,
22
(
2
), pp.
617
627
.
31.
Sefiane
,
K.
,
Yu
,
X.
,
Duursma
,
G.
, and
Xu
,
J.
,
2020
, “
On Heat and Mass Transfer Using Evaporating Self-Rewetting Mixtures in Microchannels
,”
Appl. Therm. Eng.
,
179
, p.
115662
.
32.
Drummond
,
K. P.
,
Back
,
D.
,
Sinanis
,
M. D.
,
Janes
,
D. B.
,
Peroulis
,
D.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2018
, “
A Hierarchical Manifold Microchannel Heat Sink Array for High-Heat-Flux Two-Phase Cooling of Electronics
,”
Int. J. Heat Mass Transf.
,
117
, pp.
319
330
.
33.
Liu
,
Y.
,
Li
,
Z.
,
Li
,
Y.
,
Jiang
,
Y.
, and
Tang
,
D.
,
2019
, “
Heat Transfer and Instability Characteristics of a Loop Thermosyphon With Wide Range of Filling Ratios
,”
Appl. Therm. Eng.
,
151
, pp.
262
271
.
34.
Park
,
S. H.
,
Kim
,
Y. S.
,
Kim
,
S. Y.
,
Park
,
Y. G.
, and
Ha
,
M. Y.
,
2018
, “
Numerical Study on the Two-Phase Flow Pattern and Temperature Distribution in a Loop Thermosyphon as a Defrost Device at the Evaporator in the Refrigerator
,”
J. Mech. Sci. Technol.
,
32
(
12
), pp.
5927
5936
.
35.
Zong
,
L.
,
Sun
,
D.
,
Xu
,
J.
, and
Wang
,
X.
,
2013
, “
Numerical Study of Seed Bubble-Triggered Evaporation Heat Transfer in a Single Microtube
,”
Microfluid. Nanofluid.
,
16
(
1–2
), pp.
347
360
.
36.
Huang
,
G.
,
Li
,
J.
, and
Hong
,
F.
,
2020
, “
Experimental Study on Heat Transfer Performance and Instability of Microchannel Loop Thermosyphon Heat Exchanger
,”
Cryogenics
,
233
, pp.
42
49
.
37.
Tharayil
,
T.
,
Gitty
,
N.
,
Asirvatham
,
L. G.
, and
Wongwises
,
S.
,
2019
, “
Effect of Filling Ratio and Tilt Angle on the Performance of a Mini-Loop Thermosyphon
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061013
.
You do not currently have access to this content.