Abstract

The molten salt has been widely used in concentrated solar power generation as an effective high-temperature heat transfer and heat storage working fluid. However, due to the concentrating characteristic of the tower receiver, the solar flux distribution of the molten salt receiver is extremely non-uniform, and thus the circumferential non-uniform heat flux has a prominent effect on the heat transfer performance and reliability of the traditional solar molten salt receiver tube (TRT). In this contribution, in order to solve above problems, we propose some novel folded flow tubes (NFTs), which add a partition in the tube and seal the top with end cap so that the inflow and outflow of the fluid can only proceed from the same cross section. Then, we apply the binary nitrate (solar salt) as a heat transfer fluid, which is a mixture of 60% sodium nitrate and 40% potassium nitrate. First, we analyze some effects such as flow parameters, structure, and heat flux loading direction on the convective heat transfer performance of the NFTs. The results show that the circumferential temperature difference of NFTs is about 17–92 K lower than that of TRT, and the molten salt temperature distribution is more uniform accordingly. Moreover, the heat transfer coefficient is increased about 88.37–122.85%, which can provide a guidance for the structural optimization of practical solar molten salt receivers to improve the heat transfer performance and reliability.

References

1.
Al-Amri
,
F.
, and
Mallick
,
T. K.
,
2014
, “
Effects of Nonuniform Incident Illumination on the Thermal Performance of a Concentrating Triple Junction Solar Cell
,”
Int. J. Photoenergy
,
2014
(
3
), p.
1
12
.
2.
Wang
,
K.
,
Li
,
Y. F.
,
Zhang
,
Z. D.
,
Li
,
S.-F.
,
Fan
,
Y.-H.
, and
Min
,
C.-H.
,
2023
, “
Convective Heat Transfer Characteristics of Supercritical CO2 in Mini-Channels of Compact Solar Receivers Under Unilateral Heating Conditions
,”
Appl. Therm. Eng.
,
231
, p.
120862
.
3.
Zhangjing
,
Z.
,
Yaling
,
H.
, and
Yinshi
,
L.
,
2014
, “
An Entransy Dissipation-Based Optimization Principle for Solar Power Tower Plants
,”
Sci. China Technol. Sci.
,
57
(
4
), pp.
773
783
.
4.
Kearney
,
D.
,
Herrmann
,
U.
,
Nava
,
P.
,
Kelly
,
B.
,
Mahoney
,
R.
,
Pacheco
,
J.
,
Cable
,
R.
,
Potrovitza
,
N.
,
Blake
,
D.
, and
Price
,
H
,
2003
, “
Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
170
176
.
5.
Liu
,
M.
,
Tay
,
N. H. S.
,
Bell
,
S.
,
Belusko
,
M.
,
Jacob
,
R.
,
Will
,
G.
,
Saman
,
W.
, and
Bruno
F.
,
2016
, “
Review on Concentrating Solar Power Plants and New Developments in High Temperature Thermal Energy Storage Technologies
,”
Renew. Sustain. Energy Rev.
,
53
, pp.
1411
1432
.
6.
Serrano-Lopez
,
R.
,
Fradera
,
J.
, and
Cuesta-Lopez
,
S.
,
2013
, “
Molten Salts Database for Energy Applications
,”
Chem. Eng. Process.
,
73
, pp.
87
102
.
7.
He
,
Y. L.
,
Wang
,
K.
,
Qiu
,
Y.
,
Du
,
B.-C.
,
Liang
,
Q.
, and
Du
,
S.
,
2019
, “
Review of the Solar Flux Distribution in Concentrated Solar Power: Non-Uniform Features, Challenges, and Solutions
,”
Appl. Therm. Eng.
,
149
, pp.
448
474
.
8.
Liu
,
Y.
,
Ye
,
W. J.
,
Li
,
Y. H.
, and
Li
,
J.-F.
,
2018
, “
Numerical Analysis of Inserts Configurations in a Cavity Receiver Tube of a Solar Power Tower Plant With Non-Uniform Heat Flux
,”
Appl. Therm. Eng.
,
140
, pp.
1
12
.
9.
Yao
,
Z.
,
Wang
,
Z.
,
Lu
,
Z.
, and
Wei
,
X.
,
2009
, “
Modeling and Simulation of the Pioneer 1 MW Solar Thermal Central Receiver System in China
,”
Renew. Energy
,
34
(
11
), pp.
2317
2322
.
10.
Yang
,
X.
,
Yang
,
X.
,
Ding
,
J.
,
Shao
,
Y.
, and
Fan
,
H.
,
2012
, “
Numerical Simulation Study on the Heat Transfer Characteristics of the Tube Receiver of the Solar Thermal Power Tower
,”
Appl. Energy
,
90
(
1
), pp.
142
147
.
11.
Salomé
,
A.
,
Chhel
,
F.
,
Flamant
,
G.
,
Ferrière
,
A.
, and
Thiery
,
F.
,
2013
, “
Control of the Flux Distribution on a Solar Tower Receiver Using an Optimized Aiming Point Strategy: Application to THEMIS Solar Tower
,”
Sol. Energy
,
94
, pp.
352
366
.
12.
Qiu
,
Y.
,
He
,
Y. L.
,
Li
,
P.
, and
Du
,
B.-C.
,
2017
, “
A Comprehensive Model for Analysis of Real-Time Optical Performance of a Solar Power Tower With a Multi-Tube Cavity Receiver
,”
Appl. Energy
,
185
, pp.
589
603
.
13.
Montes
,
M. J.
,
Rovira
,
A.
,
Martinez-Val
,
J. M.
, and
Ramos
,
A.
,
2012
, “
Proposal of a Fluid Flow Layout to Improve the Heat Transfer in the Active Absorber Surface of Solar Central Cavity Receivers
,”
Appl. Therm. Eng.
,
35
, pp.
220
232
.
14.
Wang
,
K.
,
He
,
Y.
,
Qiu
,
Y.
, and
Cheng
,
Z.
,
2016
, “
Integrated Numerical Study on the Coupled Photon-Thermal Conversion Process in the Central Solar Molten Salt Cavity Receiver
,”
Chin. Sci. Bull.
,
61
, pp.
1640
1649
.
15.
Liu
,
J.
,
He
,
Y.
, and
Lei
,
X.
,
2019
, “
Heat-Transfer Characteristics of Liquid Sodium in a Solar Receiver Tube With a Nonuniform Heat Flux
,”
Energies
,
12
(
8
), pp.
1432
1447
.
16.
Ying
,
Z.
,
He
,
B.
,
Su
,
L.
,
Kuang
,
Y.
,
He
,
D.
, and
Lin
,
C.
,
2020
, “
Convective Heat Transfer of Molten Salt-Based Nanofluid in a Receiver Tube With Non-Uniform Heat Flux
,”
Appl. Therm. Eng.
,
181
, p.
115922
.
17.
Liu
,
Y.
,
Chen
,
Q.
,
Hu
,
K.
, and
Hao
,
J.-H.
,
2016
, “
Flow Field Optimization for the Solar Parabolic Trough Receivers in Direct Steam Generation Systems by the Variational Principle
,”
Int. J. Heat Mass Transfer
,
102
, pp.
1073
1081
.
18.
Chang
,
C.
,
Sciacovelli
,
A.
,
Wu
,
Z.
,
Li
,
X.
,
Li
,
Y.
,
Zhao
,
M.
,
Deng
,
J.
,
Wang
,
Z.
, and
Ding
,
Y.
,
2018
, “
Enhanced Heat Transfer in a Parabolic Trough Solar Receiver by Inserting Rods and Using Molten Salt as Heat Transfer Fluid
,”
Appl. Energy
,
220
, pp.
337
350
.
19.
Kursun
,
B.
,
2019
, “
Thermal Performance Assessment of Internal Longitudinal Fins With Sinusoidal Lateral Surfaces in Parabolic Trough Receiver Tubes
,”
Renew. Energy
,
140
, pp.
816
827
.
20.
Zheng
,
N.
,
Zhang
,
K.
,
Chen
,
Q.
, and
Sun
,
Z.
,
2022
, “
Novel Self-Join Winglet Vortex Generators for Enhanced Heat Transfer of Turbulent Airflow in Round Tubes
,”
Int. Commun. Heat Mass Transfer
,
130
, p.
105806
.
21.
Min
,
C.
,
Li
,
H.
,
Gao
,
X.
,
Wang
,
K.
, and
Xie
,
L.
,
2021
, “
Numerical Investigation of Convective Heat Transfer Enhancement by a Combination of Vortex Generator and In-Tube Inserts
,”
Int. Commun. Heat Mass Transfer
,
127
, p.
105490
.
22.
Zhao
,
Z.
,
Luo
,
L.
,
Qiu
,
D.
,
Wang
,
Z.
, and
Sundén
,
B.
,
2021
, “
On the Solar Air Heater Thermal Enhancement and Flow Topology Using Differently Shaped Ribs Combined With Delta-Winglet Vortex Generators
,”
Energy
,
224
(
1
), p.
119944
.
23.
Kadohiro
,
Y.
,
Thanda
,
V. K.
,
Lachmann
,
B.
,
Risthaus
,
K.
,
Monnerie
,
N.
,
Roeb
,
M.
, and
Sattler
C.
,
2023
, “
Cavity-Shaped Direct Solar Steam Generator Employing Conical Helical Tube for High-Temperature Application: Model Development, Experimental Testing and Numerical Analysis
,”
Energy Convers. Manage.: X
,
18
, p.
100366
.
24.
Schwarzbzl
,
P.
,
Pitz-Paal
,
R.
, and
Schmitz
,
M.
,
2009
, “
Visual HFLCAL—A Software Tool for Layout and Optimisation of Heliostat Fields
,” Solarpaces.
25.
Collado
,
F. J.
,
2010
, “
One-Point Fitting of the Flux Density Produced by a Heliostat
,”
Sol. Energy
,
84
(
4
), pp.
673
684
.
26.
Collado
,
F. J.
,
Gómez
,
A.
, and
Turégano
,
J.
,
1986
, “
An Analytic Function for the Flux Density Due to Sunlight Reflected From a Heliostat
,”
Sol. Energy
,
37
, pp.
215
234
.
27.
Han
,
Y.
,
Yuting
,
W. U.
, and
Chongfang
,
M. A.
,
2019
, “
Comparative Analysis of Thermophysical Properties of Mixed Nitrates
,”
Energy Stor. Sci. Technol.
,
8
(
3
), pp.
1224
1229
.
28.
Lei
,
Y.
,
Zheng
,
F.
,
Song
,
C.
, and
Lyu
,
Y.
,
2017
, “
Improving the Thermal Hydraulic Performance of a Circular Tube by Using Punched Delta-Winglet Vortex Generators
,”
Int. J. Heat Mass Transfer
,
111
(
6
), pp.
299
311
.
29.
Shen
,
X.
,
Lu
,
J.
,
Ding
,
J.
, and
Yang
,
J.
,
2014
, “
Convective Heat Transfer of Molten Salt in Circular Tube With Nonuniform Heat Flux
,”
Exp. Therm. Fluid Sci.
,
55
, pp.
6
11
.
You do not currently have access to this content.