Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Designing and manufacturing of CubeSats have a rapidly growing interest lately as they can serve in a wide range of space missions. To ensure that they are safe, stable, and functional in harsh space environment, thermal studies are very important. New design approaches have been introduced to manufacture more efficient and long-lasting satellites, and deploying solar panels is one of them aiming to harness more solar energy. In the literature, however, the studies focusing on CubeSats with deployed solar panels at different angles are very limited. Due to this reason, we investigated the thermal influences of solar panel deployment angle for a 3U CubeSat at low Earth orbit in this study. With this aim, the solar panel deployment angles of 75, 60, 45, 30, 15, 0, −15, −30, −45, −60, and −75 deg were modeled and simulated thermally. Besides, various orbital positions corresponding to different Earth days were examined for the 3U CubeSat with fully deployed solar panels. In addition, the heat absorbed by CubeSat structural panels and its solar panels were analyzed in detail. The results showed that solar panel deployment angles are highly influential on the satellite heating, and hence, maximum heat input occurs at the deployment angle of 15 deg. It can be here noted that our results of this study may give rise to valuable contribution for optimizing the design and energy budget of CubeSats. Furthermore, the available energy harnessed by solar panels can be maximized accordingly.

References

1.
Atar
,
C.
,
Aktas
,
M.
, and
Sozbir
,
N.
,
2023
, “
Investigation of External Heats for CubeSats at Various Low Earth Orbits
,”
Pamukkale Univ. J. Eng. Sci.
,
29
(
4
), pp.
314
321
.
2.
Anh
,
N. D.
,
Hieu
,
N. N.
,
Chung
,
P. N.
, and
Anh
,
N. T.
,
2016
, “
Thermal Radiation Analysis for Small Satellites With Single-Node Model Using Techniques of Equivalent Linearization
,”
Appl. Therm. Eng.
,
94
(
3
), pp.
607
614
.
3.
Bulut
,
M.
, and
Sozbir
,
N.
,
2015
, “
Analytical Investigation of a Nanosatellite Panel Surface Temperatures for Different Altitudes and Panel Combinations
,”
Appl. Therm. Eng.
,
75
(
1
), pp.
1076
1083
.
4.
Bulut
,
M.
,
Kahriman
,
A.
, and
Sözbir
,
N.
,
2010
, “
Design and Analysis for Thermal Control System of Nanosatellite
,”
Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. Volume 10: Micro and Nano Systems
,
Vancouver, British Columbia, Canada
,
Nov. 12–18
, pp.
863
866
.
5.
Bulut
,
M.
,
Sözbir
,
Ö
, and
Sözbir
,
N.
,
2017
, “
Thermal Control of Turksat 3U Nanosatellite
,”
Proceedings of the Fifth International Symposium on Innovative Technologies in Engineering and Science
,
Baku, Azerbaijan
,
Sept. 29–30
, pp.
26
32
.
6.
Chung
,
P. N.
,
Anh
,
N. D.
,
Hieu
,
N. N.
, and
Manh
,
D. V.
,
2017
, “
Extension of Dual Equivalent Linearization to Nonlinear Analysis of Thermal Behavior of a Two-Node Model for Small Satellites in Low Earth Orbit
,”
Int. J. Mech. Sci.
,
133
(
14
), pp.
513
523
.
7.
Corpino
,
S.
,
Caldera
,
M.
,
Nichele
,
F.
,
Masoero
,
M.
, and
Viola
,
N.
,
2015
, “
Thermal Design and Analysis of a Nanosatellite in Low Earth Orbit
,”
Acta Astronaut.
,
115
(
10
), pp.
247
261
.
8.
Kovács
,
R.
, and
Józsa
,
V.
,
2018
, “
Thermal Analysis of the SMOG-1 PocketQube Satellite
,”
Appl. Therm. Eng.
,
139
(
12
), pp.
506
513
.
9.
Sanchez-Sanjuan
,
S.
,
Gonzalez-Llorente
,
J.
, and
Hurtado-Velasco
,
R.
,
2016
, “
Comparison of the Incident Solar Energy and Battery Storage in a 3U CubeSat Satellite for Different Orientation Scenarios
,”
J. Aerosp. Technol. Manage.
,
8
(
1
), pp.
91
102
.
10.
Bulut
,
M.
,
2021
, “
Thermal Design, Analysis, and Testing of the First Turkish 3U Communication CubeSat in low Earth Orbit
,”
J. Therm. Anal. Calorim.
,
143
(
6
), pp.
4341
4353
.
11.
Bulut
,
M.
, and
Sözbir
,
N.
,
2021
, “
Thermal Design, Analysis and Test Validation of TURKSAT-3USAT Satellite
,”
J. Therm. Eng.
,
7
(
3
), pp.
468
482
.
12.
Wachche
,
S.
,
Marne
,
A.
,
Singare
,
S.
,
Naik
,
P.
,
Bhide
,
O.
,
Chaudhari
,
G.
,
Vartak
,
P.
,
Pendse
,
S.
, and
Tadwalkar
,
C.
, “
Thermal Modelling and Simulation of a Pico-Satellite Using Finite Element Method
,”
Proceedings of the Fifth International Conference on Thermal Process Modeling and Computer Simulation
,
Orlando, FL
,
June 16–18
, pp.
65
74
.
13.
Steven
,
H.
, and
Huzain
,
M. F.
,
2018
, “
Requirements and Design Structure for Surya Satellite-1
,”
IOP Conf. Ser. Earth Environ. Sci.
,
149
(
1
), pp.
1
10
.
14.
Garzón
,
A.
,
Tami
,
J. A.
,
Campos-Julca
,
C. D.
, and
Acero-Niño
,
I. F.
,
2022
, “
Effect of Beta Angle and Contact Conductances on the Temperature Distribution of a 3U CubeSat
,”
Ther. Sci. Eng. Prog.
,
29
(
3
), p.
101183
.
15.
Chacón
,
S.
,
Gutiérrez
,
J.
, and
Adanaque-Infante
,
L.
,
2022
, “
Modelling Cubesat Structure for Thermal Analysis
,”
2022 IEEE XXIX International Conference on Electronics, Electrical Engineering and Computing (INTERCON)
,
Lima, Peru
,
Aug. 11–13
, pp.
1
4
.
16.
Morsch Filho
,
E.
,
Seman
,
L. O.
, and
de Paulo Nicolau
,
V.
,
2021
, “
Simulation of a CubeSat With Internal Heat Transfer Using Finite Volume Method
,”
Appl. Therm. Eng.
,
193
(
12
), p.
117039
.
17.
Atar
,
C.
, and
Aktas
,
M.
,
2022
, “
Advances in Thermal Modeling and Analysis of Satellites
,”
Gazi Univ. J. Sci.
,
35
(
1
), pp.
42
58
.
18.
Atar
,
C.
,
Aktaş
,
M.
,
Sözbir
,
N.
, and
Bulut
,
M.
,
2023
, “
Analytical Investigation of Surface Temperatures for Different Sized CubeSats at Varying Low Earth Orbits
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
8
), p.
081002
.
19.
Li
,
J.
,
Yan
,
S.
, and
Cai
,
R.
,
2013
, “
Thermal Analysis of Composite Solar Array Subjected to Space Heat Flux
,”
Aerosp. Sci. Technol.
,
27
(
1
), pp.
84
94
.
20.
Vertat
,
I.
, and
Vobornik
,
A.
,
2014
, “
Efficient and Reliable Solar Panels for Small CubeSat Picosatellites
,”
Int. J. Photoenergy
,
2014
(
1
), p.
537645
.
21.
Das
,
T. K.
,
Totani
,
T.
,
Wakita
,
M.
, and
Nagata
,
H.
, “
A Simple Thermal Design Procedure for Micro-and Nano-Satellites With Deployable Solar Array Panel
,”
Proceedings of the 45th International Conference on Environmental Systems
,
Bellevue, WA
,
July 12–16
, pp.
1
20
.
22.
Flecht
,
T.
,
2016
, “
Thermal Modelling of the PICSAT Nanosatellite Platform and Synergetic Prestudies of the CIRCUS Nanosatellite
,”
Masters level
,
Luleå University of Technology
,
Paris, France
.
23.
Atar
,
C.
,
2024
, “
Thermal Modeling and Energy Analysis of Small Satellites at Low Earth Orbits
,”
Ph.D. dissertation
,
Ankara Yıldırım Beyazıt University
,
Ankara, Türkiye
.
24.
Meseguer
,
J.
,
Pérez-Grande
,
I.
, and
Sanz-Andrés
,
A.
,
2012
, “19 — Thermal Mathematical Models,”
Spacecraft Thermal Control
, First ed.,
Woodhead Publishing
,
Sawston, Cambridge, UK
, pp.
339
348
.
25.
Sundu
,
H.
, and
Döner
,
N.
,
2020
, “
Detailed Thermal Design and Control of an Observation Satellite in Low Earth Orbit
,”
Eur. Mech. Sci.
,
4
(
4
), pp.
171
178
.
You do not currently have access to this content.