Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Lithium-ion batteries (LIBs) are the most reliable energy storage devices nowadays because of their high energy density, long life cycle, and low self-discharge rate. But still, the safety concern is a significant problem in the area. When talking about LIB safety, thermal effects come first; this leads to thermal runaway, fires, and explosions. The critical component of LIB that has a great role in safety is the separator, which serves the purpose of preventing direct contact between the positive and negative electrodes while enabling the movement of lithium ions. This work aimed to find naturally available cellulose material for the LIB separator and to predict the performance of the material by artificial neural network (ANN) for better control of thermal problems that happen with traditional polymer separator materials. The cellulose derived from banana peels is isolated and characterized for its potential use as a separator material. The study conducts the four selected characterization approaches, scanning electronics microscopy (SEM) with three different resolutions to assess the morphology of the extracted cellulose, differential scanning calorimetry (DSC) to measure the heat flow with temperature change on the cellulose and the value obtained 231.22 J/g at a maximum temperature of 323.18 °C, thermogravimetric analysis (TGA) was used to examine the weight loss of the cellulose with respect to temperature variation, which results in a weight loss of 59.37% when the temperature reaches 235 °C, which is considered favorable, and a differential thermal analysis (DTA) was used to know the temperature difference in the banana peel cellulose (BPC), which results in a temperature of 330.23 °C. This morphological and thermal analysis technique for the BPC is used to determine the heat-related properties of the BPC, including phase transitions, thermal stability, and reaction. In addition, these results show BPC as an alternative material for separators in comparison to the existing polymer-based materials. Furthermore, these experimental results are used to train an ANN to predict the performance of BPC material using a binary classification. Because of the training process, 97.58% accuracy was achieved.

References

1.
Salim
,
A. T. A.
,
Yuwono
,
I.
,
Pribadi
,
W.
,
Romandoni
,
N.
,
Yuwana
,
L.
,
Rosallino
,
R.
,
Putri
,
S. A.
, and
Alqoriah
,
T. M.
,
2021
, “
The Performance Characteristics of Electric Motors With Variation of Load in Application in Two-Wheeled Vehicles
,”
J. Phys. Conf. Ser.
,
1845
(
1
), p.
012039
.
2.
Ding
,
Y.
,
Cano
,
Z. P.
,
Yu
,
A.
,
Lu
,
J.
, and
Chen
,
Z.
,
2019
, “
Automotive Li-Ion Batteries: Current Status and Future Perspectives
,”
Electrochem. Energy Rev.
,
2
(
1
), pp.
1
28
.
3.
Wang
,
M.
,
Tian
,
Y.
,
Liu
,
W.
,
Zhang
,
R.
,
Chen
,
L.
,
Luo
,
Y.
, and
Li
,
X.
,
2020
, “
A Moving Urban Mine: The Spent Batteries of Electric Passenger Vehicles
,”
J. Cleaner Prod.
,
265
, p.
121769
.
4.
Ghiji
,
M.
,
Edmonds
,
S.
, and
Moinuddin
,
K.
,
2021
, “
A Review of Experimental and Numerical Studies of Lithium Ion Battery Fires
,”
Appl. Sci.
,
11
(
3
), pp.
1
29
.
5.
Bai
,
J.
,
Wang
,
Z.
,
Gao
,
T.
,
Bai
,
W.
, and
Wang
,
J.
,
2021
, “
Effect of Mechanical Extrusion Force on Thermal Runaway of Lithium-Ion Batteries Caused by Flat Heating
,”
J. Power Sources
,
507
, p.
230305
.
6.
Dolla
,
D. A.
, and
Fetene
,
M. G.
,
2024
, “
Investigations of Phase Change Materials on Battery Thermal Management Systems for Electric Vehicles: A Review
,”
Mater. Res. Express
,
11
(
1
), p.
012002
.
7.
Lin
,
W.
,
Wang
,
F.
,
Wang
,
H.
,
Li
,
H.
,
Fan
,
Y.
,
Chan
,
D.
,
Chen
,
S.
,
Tang
,
Y.
, and
Zhang
,
Y.
,
2022
, “
Thermal-Stable Separators: Design Principles and Strategies Towards Safe Lithium-Ion Battery Operations
,”
ChemSusChem
,
15
(
24
), p.
e202201464
.
8.
Chavan
,
S.
,
Venkateswarlu
,
B.
,
Prabakaran
,
R.
,
Salman
,
M.
,
Joo
,
S. W.
,
Choi
,
G. S.
, and
Kim
,
S. C.
,
2023
, “
Thermal Runaway and Mitigation Strategies for Electric Vehicle Lithium-Ion Batteries Using Battery Cooling Approach: A Review of the Current Status and Challenges
,”
J. Energy Storage
,
72
(
Part D
), p.
108569
.
9.
Lee
,
H.
,
Yanilmaz
,
M.
,
Toprakci
,
O.
,
Fu
,
K.
, and
Zhang
,
X.
,
2014
, “
A Review of Recent Developments in Membrane Separators for Rechargeable Lithium-Ion Batteries
,”
Energy Environ. Sci.
,
7
(
12
), pp.
3857
3886
.
10.
Lv
,
D.
,
Chai
,
J.
,
Wang
,
P.
,
Zhu
,
L.
,
Liu
,
C.
,
Nie
,
S.
,
Li
,
B.
, and
Cui
,
G.
,
2021
, “
Pure Cellulose Lithium-Ion Battery Separator With Tunable Pore Size and Improved Working Stability by Cellulose Nanofibrils
,”
Carbohydr. Polym.
,
251
(
Aug.
), p.
116975
.
11.
Chen
,
K.
,
Li
,
Y.
, and
Zhan
,
H.
,
2021
, “
Advanced Separators for Lithium-Ion Batteries
,”
IOP Conf. Ser. Earth Environ. Sci.
,
1011
(
1
), p.
012009
.
12.
Chun
,
S. J.
,
Choi
,
E. S.
,
Lee
,
E. H.
,
Kim
,
J. H.
,
Lee
,
S. Y.
, and
Lee
,
S. Y.
,
2012
, “
Eco-Friendly Cellulose Nanofiber Paper-Derived Separator Membranes Featuring Tunable Nanoporous Network Channels for Lithium-Ion Batteries
,”
J. Mater. Chem.
,
22
(
32
), pp.
16618
16626
.
13.
Cai
,
T.
,
Pannala
,
S.
,
Stefanopoulou
,
A. G.
, and
Siegel
,
J. B.
,
2020
, “
Battery Internal Short Detection Methodology Using Cell Swelling Measurements
,”
Proceedings of Am. Control Conf.
,
Denver, CO
,
July
, pp.
1143
1148
.
14.
Lee
,
S.-M.
,
Kim
,
J.-Y.
, and
Byeon
,
J.-W.
,
2018
, “
Failure Analysis of Short-Circuited Lithium-Ion Battery With Nickel-Manganese-Cobalt/Graphite Electrode
,”
J. Nanosci. Nanotechnol.
,
18
(
9
), pp.
6427
6430
.
15.
Huang
,
Z.
,
Shen
,
T.
,
Jin
,
K.
,
Sun
,
J.
, and
Wang
,
Q.
,
2022
, “
Heating Power Effect on the Thermal Runaway Characteristics of Large-Format Lithium Ion Battery With Li(Ni1/3Co1/3Mn1/3)O2 as Cathode
,”
Energy
,
239
(
Part A
), p.
121885
.
16.
Jang
,
J.
,
Oh
,
J.
,
Jeong
,
H.
,
Kang
,
W.
, and
Jo
,
C.
,
2020
, “
A Review of Functional Separators for Lithium Metal Battery Applications
,”
Materials (Basel)
,
13
(
20
), pp.
1
37
.
17.
Li
,
L.
, and
Duan
,
Y.
,
2023
, “
Engineering Polymer-Based Porous Membrane for Sustainable Lithium-Ion Battery Separators
,”
Polymers
,
15
(
18
), pp.
3690
.
18.
Chen
,
J.
,
Kang
,
T.
,
Cui
,
Y.
,
Xue
,
J.
,
Xu
,
H.
, and
Nan
,
J.
,
2021
, “
Nonflammable and Thermally Stable Glass Fiber/Polyacrylate (GFP) Separator for Lithium-Ion Batteries with Enhanced Safety and Lifespan
,”
J. Power Sources
,
496
, p.
229862
.
19.
Nurazzi
,
N. M.
,
Asyraf
,
M. R. M.
,
Rayung
,
M.
,
Norrrahim
,
M. N. F.
,
Shazleen
,
S. S.
,
Rani
,
M. S. A.
,
Shafi
,
A. R.
, et al
,
2021
, “
Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments
,”
Polymers
,
13
(
16
), pp.
2710
.
20.
Flores-Jerónimo
,
G.
,
Silva-Mendoza
,
J.
,
Morales-San Claudio
,
P. C.
,
Toxqui-Terán
,
A.
,
Aguilar-Martínez
,
J. A.
, and
Chávez-Guerrero
,
L.
,
2021
, “
Chemical and Mechanical Properties of Films Made of Cellulose Nanoplatelets and Cellulose Fibers Obtained From Banana Pseudostem
,”
Waste Biomass Valorization
,
12
(
10
), pp.
5715
5723
.
21.
Ofem
,
M. I.
,
Ene
,
E. B.
,
Ubi
,
P. A.
,
Odey
,
S. O.
, and
Fakorede
,
D. O.
,
2020
, “
Properties of Cellulose Reinforced Composites: A Review
,”
Niger. J. Technol.
,
39
(
2
), pp.
386
402
.
22.
Chen
,
H.
,
Wang
,
Z.
,
Feng
,
Y.
,
Cai
,
S.
,
Gao
,
H.
,
Wei
,
Z.
, and
Zhao
,
Y.
,
2023
, “
Cellulose-Based Separators for Lithium Batteries: Source, Preparation and Performance
,”
Chem. Eng. J.
,
471
, p.
144593
.
23.
Wu
,
M.
,
Yang
,
C.
,
Xia
,
H.
, and
Xu
,
J.
,
2021
, “
Comparative Analysis of Different Separators for the Electrochemical Performances and Long-Term Stability of High-Power Lithium-Ion Batteries
,”
Ionics (Kiel)
,
27
(
4
), pp.
1551
1558
.
24.
Dolla
,
D. A.
, and
Nallamothu
,
R. B.
,
2021
, “Analytical Analysis of Electric Vehicle Chassis Frame and Battery Thermal Management System,”
Advances of Science and Technology. ICAST 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
, Vol.
385
,
Springer
, pp.
173
189
.
25.
Kothalawala
,
M. U.
,
Gaveshith
,
M. G. K.
,
Tharaka
,
A. H. D. H.
,
Punchihewa
,
I. A.
, and
Sriyaratna
,
D.
,
2022
, “
Banana Disease Identification Using Machine Learning Based Technologies and Weather-Based Dispersion Analysis
,”
2022 Fourth International Conference on Advancements in Computing (ICAC)
,
IEEE
, pp.
234
239
.
26.
Zhang
,
R.
,
Hou
,
Q.
,
Wang
,
Y.
,
Zhu
,
W.
,
Fan
,
J.
,
Zheng
,
M.
, and
Dong
,
Q.
,
2022
, “
Electrochemistry Communications A Biomass-Based Hierarchical Carbon via MOFs-Assisted Synthesis for High-Rate Lithium-Ion Storage
,”
Electrochem. Commun.
,
139
, p.
107310
.
27.
Lizundia
,
E.
,
Costa
,
C. M.
,
Alves
,
R.
, and
Lanceros-Méndez
,
S.
,
2020
, “
Cellulose and Its Derivatives for Lithium Ion Battery Separators : A Review on the Processing Methods and Properties
,”
Carbohydr. Polym. Technol. Appl.
,
1
, p.
100001
.
28.
Tarekegn
,
K.
,
Asado
,
A.
,
Gafaro
,
T.
, and
Shitaye
,
Y.
,
2020
, “
Value Chain Analysis of Banana in Bench Maji and Sheka Zones of Southern Ethiopia
,”
Cogent Food Agric.
,
6
(
1
), pp.
1785103
.
29.
Xue
,
M.
,
Lu
,
W.
,
Chen
,
C.
,
Tan
,
Y.
,
Li
,
B.
, and
Zhang
,
C.
,
2019
, “
Optimized Synthesis of Banana Peel Derived Porous Carbon and Its Application in Lithium Sulfur Batteries
,”
Mater. Res. Bull.
,
112
(
Dec.
), pp.
269
280
.
30.
Surattanamal
,
F.
,
Sulong
,
S.
,
Waloh
,
N.
,
Sohsansa
,
B.
,
Dahlan
,
W.
, and
Suksuwan
,
A.
,
2022
, “
Physicochemical Properties of Cellulose Extracted From Hom Thong Banana Peels
,”
Proc. Int. Halal Sci. Technol. Conf.
,
14
(
1
), pp.
194
201
.
31.
Borela
,
V. T.
,
Ashley
,
D.
,
Apolinar
,
D. S.
, and
Info
,
A.
,
2020
, “
Banana Peel Cellulose Nanofibers (CNFs) as Retrofitting Material to Soy-Protein in Manufacturing Biodegradable Food Packaging
,”
J. Sci. Res. Med. Biol. Sci.
,
1
(
1
), pp.
10
29
.
32.
Harini
,
K.
,
Ramya
,
K.
, and
Sukumar
,
M.
,
2018
, “
Extraction of Nano Cellulose Fibers From the Banana Peel and Bract for Production of Acetyl and Lauroyl Cellulose
,”
Carbohydr. Polym.
,
201
, pp.
329
339
.
33.
Pereira
,
M. A. F.
,
Monteiro
,
C. R. M.
,
Pereira
,
G. N.
,
Júnior
,
S. E. B.
,
Zanella
,
E.
,
Ávila
,
P. F.
,
Stambuk
,
B. U.
,
Goldbeck
,
R.
,
de Oliveira
,
D.
, and
Poletto
,
P.
,
2021
, “
Deconstruction of Banana Peel for Carbohydrate Fractionation
,”
Bioprocess Biosyst. Eng.
,
44
(
2
), pp.
297
306
.
34.
Tsegaye
,
M.
,
Chandravanshi
,
B. S.
,
Feleke
,
S.
, and
Redi-Abshiro
,
M
,
2021
, “
Enhanced Cellulose Efficiency of Pressurized Hot Water Pretreated Highland Ethiopian Bamboo (Yushania Alpina): A Potential Feedstock for Ethanol Production
,”
Chem. Int.
,
7
(
1
), pp.
53
61
.
35.
Stevulova
,
N.
,
Cigasova
,
J.
,
Estokova
,
A.
,
Terpakova
,
E.
,
Geffert
,
A.
,
Kacik
,
F.
,
Singovszka
,
E.
, and
Holub
,
M.
,
2014
, “
Properties Characterization of Chemically Modified Hemp Hurds
,”
Materials (Basel)
,
7
(
12
), pp.
8131
8150
.
36.
Bageru
,
A. B.
, and
Srivastava
,
V. C.
,
2017
, “
Preparation and Characterisation of Biosilica From Teff (Eragrostis Tef) Straw by Thermal Method
,”
Mater. Lett.
,
206
, pp.
13
17
.
37.
Szymanska-Chargot
,
M.
,
Chylinska
,
M.
,
Gdula
,
K.
,
Koziol
,
A.
, and
Zdunek
,
A.
,
2017
, “
Isolation and Characterization of Cellulose From Different Fruit and Vegetable Pomaces
,”
Polymers
,
9
(
10
), pp.
495
.
38.
Jiang
,
L.
,
Zhang
,
X.
,
Chen
,
Y.
,
Qiao
,
L.
,
Lu
,
X.
, and
Tian
,
X.
,
2018
, “
Modified Polypropylene/Cotton Fiber Composite Nonwoven as Lithium-Ion Battery Separator
,”
Mater. Chem. Phys.
,
219
, pp.
368
375
.
39.
Goncalves
,
R.
,
Lizundia
,
E.
,
Silva
,
M. M.
,
Costa
,
C. M.
, and
Lanceros-Méndez
,
S.
,
2019
, “
Mesoporous Cellulose Nanocrystal Membranes as Battery Separators for Environmentally Safer Lithium-Ion Batteries
,”
ACS Appl. Energy Mater.
,
2
(
5
), pp.
3749
3761
.
40.
Sheng
,
J.
,
Wang
,
R.
, and
Yang
,
R.
,
2018
, “
Physicochemical Properties of Cellulose Separators for Lithium Ion Battery: Comparison With Celgard2325
,”
Materials
,
12
(
1
), p.
2
.
41.
Function
,
S.
,
Liu
,
P.
,
Zhang
,
X.
,
Ma
,
C.
,
Huang
,
D.
,
Li
,
P.
,
Shi
,
Y.
,
Qu
,
C.
, and
Shi
,
X.
,
2023
, “
Preparation and Properties of PP/PAN/Cotton Fibers Composite Membrane as Lithium-Ion Battery Separator With Thermal
,”
Batteries
,
9
(
2
), pp.
113
.
42.
Zhang
,
H.
,
Wang
,
X.
, and
Liang
,
Y.
,
2015
, “
Preparation and Characterization of a Lithium-Ion Battery Separator From Cellulose Nanofibers
,”
Heliyon
,
1
(
2
), p.
e00032
.
43.
Wang
,
S.
,
Zhao
,
C.
,
Han
,
W.
, and
Jiang
,
Y.
,
2019
, “
A Polyimide/Cellulose Lithium Battery Separator Paper
,”
E3S Web Conf.
,
79
, pp.
1
4
.
44.
Xia
,
Y.
,
Li
,
X.
,
Zhuang
,
J.
,
Wang
,
W.
,
Abbas
,
S. C.
,
Fu
,
C.
,
Zhang
,
H.
, et al
,
2024
, “
Exploitation of Function Groups in Cellulose Materials for Lithium-Ion Batteries Applications
,”
Carbohydr. Polym.
,
325
, pp.
121570
.
45.
Li
,
Y.
,
Yu
,
L.
,
Hu
,
W.
, and
Hu
,
X.
,
2020
, “
Thermotolerant Separators for Safe Lithium-Ion Batteries Under Extreme Conditions
,”
J. Mater. Chem. A
,
8
(
39
), pp.
20294
20317
.
46.
Pereira
,
D. J.
,
Mcray
,
H. A.
,
Bopte
,
S. S.
, and
Jalilvand
,
G.
,
2024
, “
H2O/HF Scavenging Mechanism in Cellulose-Based Separators for Lithium-Ion Batteries With Enhanced Cycle Life
,”
ACS Appl. Mater. Interfaces
,
16
(
5
), pp.
5745
5757
.
47.
Wang
,
S.
,
Jin
,
S.
,
Bai
,
D.
,
Fan
,
Y.
,
Shi
,
H.
, and
Fernandez
,
C.
,
2021
, “
A Critical Review of Improved Deep Learning Methods for the Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
Energy Rep.
,
7
(
September
), pp.
5562
5574
.
48.
Wu
,
B.
,
Han
,
S.
,
Shin
,
K. G.
, and
Lu
,
W.
,
2018
, “
Application of Artificial Neural Networks in Design of Lithium-Ion Batteries
,”
J. Power Sources
,
395
, pp.
128
136
.
49.
Li
,
A.
,
Yuen
,
A. C. Y.
,
Wang
,
W.
,
Chen
,
T. B. Y.
,
Lai
,
C. S.
,
Yang
,
W.
,
Wu
,
W.
,
Chan
,
Q. N.
,
Kook
,
S.
, and
Yeoh
,
G. H.
,
2022
, “
Integration of Computational Fluid Dynamics and Artificial Neural Network for Optimization Design of Battery Thermal Management System
,”
Batteries
,
8
(
7
), pp.
69
.
50.
Ling
,
C.
,
2022
, “
A Review of the Recent Progress in Battery Informatics
,”
npj Comput. Mater.
,
8
(
1
), pp.
1
22
.
51.
Bulut
,
E.
,
Albak
,
,
Sevilgen
,
G.
, and
Öztürk
,
F.
,
2022
, “
Prediction and Optimization of the Design Decisions of Liquid Cooling Systems of Battery Modules Using Artificial Neural Networks
,”
Int. J. Energy Res.
,
46
(
6
), pp.
7293
7308
.
52.
Rahman
,
M. M.
,
Shakeri
,
M.
,
Tiong
,
S. K.
,
Khatun
,
F.
,
Amin
,
N.
,
Pasupuleti
,
J.
, and
Hasan
,
M. K.
,
2021
, “
Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks
,”
Sustainability
,
13
(
4
), pp.
2393
.
53.
Wang
,
S.
,
Zhao
,
C.
,
Han
,
Wenjia
, et al
,
2019
, “
A polyimide/cellulose lithium battery separator paper
,”
E3S Web of Conferences
,
79
(
03004
), pp.
13
25
.
54.
Azamzam
,
A. A.
,
Rafatullah
,
M.
,
Yahya
,
E. B.
,
Ahmad
,
M. I.
,
Lalung
,
J.
,
Alam
,
M.
, and
Siddiqui
,
M. R.
,
2022
, “
Enhancing the Efficiency of Banana Peel Bio-Coagulant in Turbid and River Water Treatment Applications
,”
Water (Switzerland)
,
14
(
16
), p.
2473
.
55.
Ali
,
A.
,
2017
, “
Removal of Mn(II) From Water Using Chemically Modified Banana Peels as Efficient Adsorbent
,”
Environ. Nanotechnol., Monit. Manage.
,
7
, pp.
57
63
.
56.
Mohd Jamil
,
N. A.
,
Jaffar
,
S. S.
,
Saallah
,
S.
,
Misson
,
M.
,
Siddiquee
,
S.
,
Roslan
,
J.
, and
Lenggoro
,
W.
,
2022
, “
Isolation of Cellulose Nanocrystals From Banana Peel Using One-Pot Microwave and Mild Oxidative Hydrolysis System
,”
Nanomaterials
,
12
(
19
), pp.
1
18
.
57.
Safwan Alikasturi
,
A.
,
Shaharuddin
,
S.
,
Razealy Anuar
,
M.
,
Radzuan Mohamad Radzi
,
A.
,
Syafiq Fauzan Mohd Asnawi
,
A.
,
Nadiah Husin
,
A.
,
Asikin Aswandi
,
N.
, and
Izzat Mustapha
,
A.
,
2018
, “
Extraction of Glucose by Using Alkaline Hydrolysis From Musa Sapientum Peels, Ananas Comosus and Mangifera Indica Linn
,”
Mater. Today: Proc.
,
5
(
10
), pp.
22148
22153
.
58.
Chong
,
J. K.
, and
Ong
,
S. T.
,
2021
, “
Utilization of Banana Peel as a Biosorbent for the Removal of Basic Red 29 From Aqueous Solution
,”
Stud. Univ. Babes-Bolyai, Chem.
,
66
(
4
), pp.
171
187
.
59.
Mishra
,
S.
,
Prabhakar
,
B.
,
Kharkar
,
P. S.
, and
Pethe
,
A. M.
,
2022
, “
Banana Peel Waste: An Emerging Cellulosic Material to Extract Nanocrystalline Cellulose
,”
ACS Omega
,
8
(
1
), pp.
1140
1145
.
60.
Klang
,
V.
, and
Matsko
,
N. B.
,
2014
, “
Electron Microscopy of Pharmaceutical Systems
,”
Adv. Imaging Electron Phys.
,
181
, pp.
125
208
.
61.
Kumar
,
V.
,
Chakraborty
,
P.
,
Janghu
,
P.
,
Umesh
,
M.
,
Sarojini
,
S.
,
Pasrija
,
R.
,
Kaur
,
K.
, et al
,
2023
, “
Potential of Banana Based Cellulose Materials for Advanced Applications: A Review on Properties and Technical Challenges
,”
Carbohydr. Polym. Technol. Appl.
,
6
, p.
100366
.
62.
Shreedhana
,
K.
, and
Ilavarasi
,
R.
,
2020
, “
Fabrication of Nanocrystalline Cellulose From Banana Peel Obtained From Unripe Plantain Bananas
,”
J. Phys. Conf. Ser.
,
1644
(
1
), pp.
012002
.
63.
Pelissari
,
F. M.
,
Sobral
,
P. J. D. A.
, and
Menegalli
,
F. C.
,
2014
, “
Isolation and Characterization of Cellulose Nanofibers From Banana Peels
,”
Cellulose
,
21
(
1
), pp.
417
432
.
64.
Martinez-Cisneros
,
C.
,
Antonelli
,
C.
,
Levenfeld
,
B.
,
Varez
,
A.
, and
Sanchez
,
J. Y.
,
2016
, “
Evaluation of Polyolefin-Based Macroporous Separators for High Temperature Li-Ion Batteries
,”
Electrochim. Acta
,
216
, pp.
68
78
.
65.
Gogia
,
A.
,
Wang
,
Y.
,
Rai
,
A. K.
,
Bhattacharya
,
R.
,
Subramanyam
,
G.
, and
Kumar
,
J.
,
2021
, “
Binder-Free, Thin-Film Ceramic-Coated Separators for Improved Safety of Lithium-Ion Batteries
,”
ACS Omega
,
6
(
6
), pp.
4204
4211
.
66.
Giri
,
S.
, and
Joshi
,
B.
,
2021
, “
Multilayer Backpropagation Neural Networks for Implementation of Logic Gates
,”
Int. J. Comput. Sci. Eng. Survey
,
12
(
1
), pp.
1
12
.
67.
Hsu
,
C. W.
,
Xiong
,
R.
,
Chen
,
N. Y.
,
Li
,
J.
, and
Tsou
,
N. T.
,
2022
, “
Deep Neural Network Battery Life and Voltage Prediction by Using Data of One Cycle Only
,”
Appl. Energy
,
306
.
68.
Ferreira
,
R.
,
Sabino
,
C.
,
Canesche
,
M.
,
Neto
,
O. P. V.
, and
Nacif
,
J. A.
,
2024
, “
AIoT Tool Integration for Enriching Teaching Resources and Monitoring Student Engagement
,”
Internet Things
,
26
, p.
101045
.
69.
Ogundokun
,
R. O.
,
Misra
,
S.
,
Maskeliunas
,
R.
, and
Damasevicius
,
R.
,
2022
, “
A Review on Federated Learning and Machine Learning Approaches: Categorization, Application Areas, and Blockchain Technology
,”
Information
,
13
(
5
), pp.
263
.
70.
Chhajer
,
P.
,
Shah
,
M.
, and
Kshirsagar
,
A.
,
2022
, “
The Applications of Artificial Neural Networks, Support Vector Machines, and Long–Short Term Memory for Stock Market Prediction
,”
Decis. Anal. J.
,
2
, pp.
100015
.
71.
Feng
,
J.
, and
Lu
,
S.
,
2019
, “
Performance Analysis of Various Activation Functions in Artificial Neural Networks
,”
J. Phys. Conf. Ser.
,
1237
(
2
), pp.
022030
.
72.
Abdolrasol
,
M. G. M.
,
Suhail Hussain
,
S. M.
,
Ustun
,
T. S.
,
Sarker
,
M. R.
,
Hannan
,
M. A.
,
Mohamed
,
R.
,
Ali
,
J. A.
,
Mekhilef
,
S.
, and
Milad
,
A.
,
2021
, “
Artificial Neural Networks Based Optimization Techniques: A Review
,”
Electronics
,
10
(
21
), p.
2689
.
73.
Alzubaidi
,
L.
,
Zhang
,
J.
,
Humaidi
,
A. J.
,
Al-Dujaili
,
A.
,
Duan
,
Y.
,
Al-Shamma
,
O.
,
Santamaría
,
J.
,
Fadhel
,
M. A.
,
Al-Amidie
,
M.
, and
Farhan
,
L.
,
2021
, “
Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions
,”
J. Big Data
,
8
(
1
), pp.
1
74
.
74.
Baek
,
M.
,
Yoo
,
J.
,
Kim
,
Y.
,
Jang
,
Y. J.
,
Seo
,
H.
,
Lee
,
S. M.
,
Jo
,
H.
,
Woo
,
S. G.
, and
Kim
,
J. H.
,
2023
, “
Surface Modification of Polyethylene Separator for Li-Ion Batteries via Imine Formation
,”
Int. J. Energy Res.
,
2023
(
1
), pp.
4624762
.
75.
Heidari
,
A. A.
, and
Mahdavi
,
H.
,
2020
, “
Recent Development of Polyolefin-Based Microporous Separators for Li−Ion Batteries: A Review
,”
Chem. Rec.
,
20
(
6
), pp.
570
595
.
You do not currently have access to this content.