Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Monte Carlo ray tracing (MCRT) is a prevalent and reliable computation method for simulating light-matter interactions in porous media. However, modeling these interactions becomes computationally expensive due to complex structures and enormous variables. Hence, machine learning (ML) models have been utilized to overcome computational burdens. In this study, we investigate two distinct frameworks for characterizing radiative properties in porous media for pack-free and packing-based methods. We employ two different regression tools for each case, namely Gaussian process (GP) regressions for pack-free MCRT and convolutional neural network (CNN) models for pack-based MCRT to predict the radiative properties. Our study highlights the importance of selecting the appropriate regression method based on the physical model, which can lead to significant computational efficiency improvement. Our results show that both models can predict the radiative properties with high accuracy (>90%). Furthermore, we demonstrate that combining MCRT with ML inference not only enhances predictive accuracy but also reduces the computational cost of simulation by more than 96% using the GP model and 99% for the CNN model.

References

1.
Mesgarpour
,
M.
,
Heydari
,
A.
,
Wongwises
,
S.
, and
Reza Gharib
,
M.
,
2021
, “
Numerical Optimization of a New Concept in Porous Medium Considering Thermal Radiation: Photovoltaic Panel Cooling Application
,”
Sol. Energy
,
216
, pp.
452
467
.
2.
Hosseinzadeh
,
K.
,
Roghani
,
S.
,
Mogharrebi
,
A. R.
,
Asadi
,
A.
, and
Ganji
,
D. D.
,
2021
, “
Optimization of Hybrid Nanoparticles With Mixture Fluid Flow in an Octagonal Porous Medium by Effect of Radiation and Magnetic Field
,”
J. Therm. Anal. Calorim.
,
143
(
2
), pp.
1413
1424
.
3.
Godini
,
A.
, and
Kheradmand
,
S.
,
2021
, “
Optimization of Volumetric Solar Receiver Geometry and Porous Media Specifications
,”
Renewable Energy
,
172
, pp.
574
581
.
4.
Fuqiang
,
W.
,
Xinping
,
Z.
,
Yan
,
D.
,
Hongliang
,
Y.
,
Shi
,
X.
,
Yang
,
L.
, and
Ziming
,
C.
,
2022
, “
Progress in Radiative Transfer in Porous Medium: A Review From Macro Scale to Pore Scale With Experimental Test
,”
Appl. Therm. Eng.
,
210
, p.
118331
.
5.
Akolkar
,
A.
, and
Petrasch
,
J.
,
2011
, “
Tomography Based Pore-Level Optimization of Radiative Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
54
(
23
), pp.
4775
4783
.
6.
Hajimirza
,
S.
,
El Hitti
,
G.
,
Heltzel
,
A.
, and
Howell
,
J.
,
2012
, “
Specification of Micro-Nanoscale Radiative Patterns Using Inverse Analysis for Increasing Solar Panel Efficiency
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
10
), p.
102702
.
7.
Wang
,
F.
,
Tan
,
J.
,
Yong
,
S.
,
Tan
,
H.
, and
Chu
,
S.
,
2014
, “
Thermal Performance Analyses of Porous Media Solar Receiver With Different Irradiative Transfer Models
,”
Int. J. Heat Mass Transfer
,
78
, pp.
7
16
.
8.
Ren
,
Y.
,
Qi
,
H.
,
Shi
,
J.
,
Chen
,
Q.
,
Wang
,
Y.
, and
Ruan
,
L.
,
2017
, “
Thermal Performance Characteristics of Porous Media Receiver Exposed to Concentrated Solar Radiation
,”
J. Energy Eng.
,
143
(
5
), p.
04017013
.
9.
Kamdem
,
H. T. T.
,
2017
, “
Radiative Characteristics of High-Porosity Media Containing Randomly Oriented Fibers in Space
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
021014
.
10.
Yi
,
H.-L.
,
Wang
,
C.-H.
, and
Tan
,
H.-P.
,
2014
, “
Transient Radiative Transfer in a Complex Refracting Medium by a Modified Monte Carlo Simulation
,”
Int. J. Heat Mass Transfer
,
79
, pp.
437
449
.
11.
Mishchenko
,
M. I.
,
2008
, “
Multiple Scattering, Radiative Transfer, and Weak Localization in Discrete Random Media: Unified Microphysical Approach
,”
Rev. Geophys.
,
46
(
2
), p.
2
.
12.
Wang
,
C.-H.
,
Feng
,
Y.-Y.
,
Yue
,
K.
,
Zhang
,
X.-X.
,
Zhang
,
Y.
, and
Yi
,
H.-L.
,
2019
, “
Polarized Radiative Transfer in Complex Media Exposed to External Irradiation
,”
J. Quant. Spectrosc. Radiat. Transfer
,
225
, pp.
166
179
.
13.
Hajimirza
,
S.
,
2023
, “
Precise Derivations of Radiative Properties of Porous Media Using Renewal Theory
,”
J. Quant. Spectrosc. Radiat. Transfer
,
310
, p.
108709
.
14.
Stephens
,
G. L.
,
1988
, “
Radiative Transfer Through Arbitrarily Shaped Optical Media. Part I: A General Method of Solution
,”
J. Atmos. Sci.
,
45
(
12
), pp.
1818
1836
.
15.
Sacadura
,
J.-F.
,
2011
, “
Thermal Radiative Properties of Complex Media: Theoretical Prediction Versus Experimental Identification
,”
Heat Transfer Eng.
,
32
(
9
), pp.
754
770
.
16.
Pomraning
,
G. C.
,
1998
, “
Radiative Transfer and Transport Phenomena in Stochastic Media
,”
Int. J. Eng. Sci.
,
36
(
12
), pp.
1595
1621
.
17.
Howell
,
J. R.
,
1998
, “
The Monte Carlo Method in Radiative Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
3
), pp.
547
560
.
18.
Yang
,
Y. S.
,
Howell
,
J. R.
, and
Klein
,
D. E.
,
1983
, “
Radiative Heat Transfer Through a Randomly Packed Bed of Spheres by the Monte Carlo Method
,”
ASME J. Heat Transfer-Trans. ASME
,
105
(
2
), pp.
325
332
.
19.
Howell
,
J. R.
, and
Daun
,
K. J.
,
2021
, “
The Past and Future of the Monte Carlo Method in Thermal Radiation Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
10
), p.
100801
.
20.
Wu
,
H.
,
Hao
,
S.
,
Niu
,
F.
,
Tu
,
J.
, and
Jiang
,
S.
,
2022
, “
A Data-Driven Deep Learning Model of Radiative Heat Transfer in Dense Granular Systems
,”
Ann. Nucl. Energy
,
167
, p.
108855
.
21.
Kang
,
H. H.
,
Kaya
,
M.
, and
Hajimirza
,
S.
,
2019
, “
A Data Driven Artificial Neural Network Model for Predicting Radiative Properties of Metallic Packed Beds
,”
J. Quant. Spectrosc. Radiat. Transfer
,
226
, pp.
66
72
.
22.
Lu
,
Y.
,
Zhang
,
R.
,
Wang
,
L.
,
Su
,
X.
,
Zhang
,
M.
,
Li
,
H.
,
Li
,
S.
, and
Zhou
,
J.
,
2023
, “
Prediction of Diffuse Solar Radiation by Integrating Radiative Transfer Model and Machine-Learning Techniques
,”
Sci. Total Environ.
,
859
(Part 1), p.
160269
.
23.
Lu
,
Y.
,
Wang
,
L.
,
Zhu
,
C.
,
Zou
,
L.
,
Zhang
,
M.
,
Feng
,
L.
, and
Cao
,
Q.
,
2023
, “
Predicting Surface Solar Radiation Using a Hybrid Radiative Transfer–Machine Learning Model
,”
Renewable Sustainable Energy Rev.
,
173
, p.
113105
.
24.
Ukkonen
,
P.
,
Pincus
,
R.
,
Hogan
,
R. J.
,
Pagh Nielsen
,
K.
, and
Kaas
,
E.
,
2020
, “
Accelerating Radiation Computations for Dynamical Models With Targeted Machine Learning and Code Optimization
,”
J. Adv. Model. Earth Syst.
,
12
(
12
), p.
e2020MS002226
.
25.
Crilly
,
A. J.
,
Duhig
,
B.
, and
Bouziani
,
N.
,
2024
, “
Learning Closure Relations Using Differentiable Programming: An Example in Radiation Transport
,”
J. Quant. Spectrosc. Radiat. Transfer
,
318
, p.
108941
.
26.
Matsekh
,
A.
,
Chacón
,
L.
,
Park
,
H.
, and
Chen
,
G.
,
2020
, “
On Learning Particle Distributions in the 1D Implicit Monte Carlo Simulations of Radiation Transport
,”
Applications of Machine Learning 2020 SPIE
,
Virtual Online
,
Aug. 21
, pp.
92
104
.
27.
Tano
,
M. E.
, and
Ragusa
,
J. C.
,
2021
, “
Sweep-Net: An Artificial Neural Network for Radiation Transport Solves
,”
J. Comput. Phys.
,
426
, p.
109757
.
28.
Hajimirza
,
S.
, and
Sharadga
,
H.
,
2021
, “
Learning Thermal Radiative Properties of Porous Media From Engineered Geometric Features
,”
Int. J. Heat Mass Transfer
,
179
, p.
121668
.
29.
Eghtesad
,
A.
,
Tabassum
,
F.
, and
Hajimirza
,
S.
,
2023
, “
A Generalized Characterization of Radiative Properties of Porous Media Using Engineered Features and Artificial Neural Networks
,”
Int. J. Heat Mass Transfer
,
205
, p.
123890
.
30.
Tabassum
,
F.
,
Eghtesad
,
A.
, and
Hajimirza
,
S.
,
2023
, “
Predicting Light-Matter Interaction in Semi-Transparent Elliptical Packed Beds Using Hybrid Deep Learning (HDL) Approach
,”
Results Eng.
,
19
, p.
101368
.
31.
Adams
,
K. L.
,
Russel
,
W. B.
, and
Rebenfeld
,
L.
,
1988
, “
Radial Penetration of a Viscous Liquid Into a Planar Anisotropic Porous Medium
,”
Int. J. Multiphase Flow
,
14
(
2
), pp.
203
215
.
32.
Jia
,
X.
, and
Williams
,
R. A.
,
2001
, “
A Packing Algorithm for Particles of Arbitrary Shapes
,”
Powder Technol.
,
120
(
3
), pp.
175
186
.
33.
Reeves
,
C.
,
1996
, “
Hybrid Genetic Algorithms for Bin-Packing and Related Problems
,”
Ann. Oper. Res.
,
63
(
3
), pp.
371
396
.
34.
Zhao
,
X.
,
Rao
,
Y.
,
Meng
,
R.
, and
Fang
,
J.
,
2023
, “
A Q-Learning-Based Algorithm for the 2D-Rectangular Packing Problem
,”
Soft Comput.
,
27
(
17
), pp.
12057
12070
.
35.
Bradley
,
W.
,
Kim
,
J.
,
Kilwein
,
Z.
,
Blakely
,
L.
,
Eydenberg
,
M.
,
Jalvin
,
J.
,
Laird
,
C.
, and
Boukouvala
,
F.
,
2022
, “
Perspectives on the Integration Between First-Principles and Data-Driven Modeling
,”
Comput. Chem. Eng.
,
166
, p.
107898
.
36.
Sahimi
,
M.
,
2024
, “
Physics-Informed and Data-Driven Discovery of Governing Equations for Complex Phenomena in Heterogeneous Media
,”
Phys. Rev. E
,
109
(
4
), p.
041001
.
37.
Ponangi
,
B. R.
,
2023
, “
Effect Analysis on the Maximum Nondimensional Temperature in the Cold Plate in Battery Thermal Management System-Based Artificial Neural Network
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
1
), p.
011007
.
38.
Karbalaei Mehdi
,
J.
,
Nejat
,
A.
, and
Shariat Panahi
,
M.
,
2017
, “
Heat Transfer Improvement in Automotive Brake Disks Via Shape Optimization of Cooling Vanes Using Improved TPSO Algorithm Coupled With Artificial Neural Network
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011013
.
39.
Li
,
W.
,
Garg
,
A.
,
Xiao
,
M.
, and
Gao
,
L.
,
2020
, “
Optimization for Liquid Cooling Cylindrical Battery Thermal Management System Based on Gaussian Process Model
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021015
.
40.
Prince
,
H. A.
,
Siam
,
M. M. H.
,
Ghosh
,
A.
, and
Mamun
,
M. A. H.
,
2023
, “
Application of Artificial Intelligence on Predicting the Effects of Buoyancy Ratio on Magnetohydrodynamics Double-Diffusive Mixed Convection and Entropy Generation in Different Nanofluids and Hybrid Nanofluids
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
9
), p.
091008
.
41.
Bhowmik
,
S.
,
Panua
,
R.
,
Kumar Ghosh
,
S.
,
Debroy
,
D.
, and
Paul
,
A.
,
2018
, “
A Comparative Study of Artificial Intelligence Based Models to Predict Performance and Emission Characteristics of a Single Cylinder Diesel Engine Fueled With Diesosenol
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041004
.
42.
Zhu
,
F.
,
Chen
,
J.
, and
Han
,
Y.
,
2021
, “
A Multiple Regression Convolutional Neural Network for Estimating Multi-parameters Based on Overall Data in the Inverse Heat Transfer Problem
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
5
), p.
051003
.
43.
Zhu
,
F.
,
Chen
,
J.
,
Ren
,
D.
, and
Han
,
Y.
,
2023
, “
A Deep Learning-Based Surrogate Model for Complex Temperature Field Calculation With Various Thermal Parameters
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
10
), p.
101002
.
44.
Schulz
,
E.
,
Speekenbrink
,
M.
, and
Krause
,
A.
,
2018
, “
A Tutorial on Gaussian Process Regression: Modelling, Exploring, and Exploiting Functions
,”
J. Math. Psychol.
,
85
, pp.
1
16
.
45.
Tong
,
Z.-X.
,
Li
,
M.-J.
,
Gu
,
Z.
,
Yan
,
J.-J.
, and
Tao
,
W.-Q.
,
2022
, “
A Gaussian Process Regression Accelerated Multiscale Model for Conduction-Radiation Heat Transfer in Periodic Composite Materials With Temperature-Dependent Thermal Properties
,”
Adv. Aerodyn.
,
4
(
1
), p.
30
.
46.
Gaussian Process Regression for Materials and Molecules | Chemical Reviews
.” https://pubs.acs.org/doi/full/10.1021/acs.chemrev.1c00022.
47.
Lubbe
,
F.
,
Maritz
,
J.
, and
Harms
,
T.
,
2020
, “
Evaluating the Potential of Gaussian Process Regression for Solar Radiation Forecasting: A Case Study
,”
Energies
,
13
(
20
), p.
5509
.
48.
Xu
,
J.
,
Wei
,
H.
, and
Bao
,
H.
,
2023
, “
Physics-Informed Neural Networks for Studying Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
217
, p.
124671
.
49.
Kamrava
,
S.
,
Tahmasebi
,
P.
, and
Sahimi
,
M.
,
2020
, “
Linking Morphology of Porous Media to Their Macroscopic Permeability by Deep Learning
,”
Transp. Porous Med.
,
131
(
2
), pp.
427
448
.
50.
Chen
,
X.
,
Li
,
N.
,
Zhou
,
X.
, and
Duan
,
Z.
,
2023
, “
Prediction of Heat Transfer for Compact Tube Heat Exchanger Based on Porous Models
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
3
), p.
031002
.
51.
Liu
,
K.
,
Zhang
,
M.
, and
Pan
,
Z.
,
2016
, “
Facial Expression Recognition With CNN Ensemble
,”
2016 International Conference on Cyberworlds (CW)
,
Chongqing, China
,
Sept. 28–30
, pp.
163
166
.
52.
Patil
,
A.
, and
Rane
,
M.
,
2021
, “Convolutional Neural Networks: An Overview and Its Applications in Pattern Recognition,”
Information and Communication Technology for Intelligent Systems
,
T.
Senjyu
,
P. N.
Mahalle
,
T.
Perumal
, and
A.
Joshi
, eds.,
Springer
,
Singapore
, pp.
21
30
.
53.
Schütt
,
K.
,
Kindermans
,
P.-J.
,
Sauceda Felix
,
H. E.
,
Chmiela
,
S.
,
Tkatchenko
,
A.
, and
Müller
,
K.-R.
,
2017
, “SchNet: A Continuous-Filter Convolutional Neural Network for Modeling Quantum Interactions,”
Advances in Neural Information Processing Systems
,
U.
von Luxburg
,
I.
Guyon
,
S.
Bengio
,
H.
Wallach
, and
R.
Fergus
, eds.,
Curran Associates, Inc.
,
Red Hook, NY
.
54.
Qassim
,
H.
,
Verma
,
A.
, and
Feinzimer
,
D
.,
2018
, “
Compressed Residual-VGG16 CNN Model for Big Data Places Image Recognition
,”
2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC)
,
Las Vegas, NV
,
Jan. 8–10
, pp.
169
175
.
55.
Bousfield
,
D. W.
, and
Karles
,
G.
,
2004
, “
Penetration Into Three-Dimensional Complex Porous Structures
,”
J. Colloid Interface Sci.
,
270
(
2
), pp.
396
405
.
56.
Aloysius
,
N.
, and
Geetha
,
M.
,
2017
, “
A Review on Deep Convolutional Neural Networks
,”
2017 International Conference on Communication and Signal Processing (ICCSP)
,
Chennai, India
,
Apr. 6–8
, pp.
0588
0592
.
You do not currently have access to this content.