Abstract

As the depth of oil and gas exploration increases, downhole electronics face the threat of high-temperature failure. At present, passive cooling technology has the problem of short working time, while active cooling technology has low energy utilization. This paper presents a thermal management system of vapor compression with a combination of active and passive cooling. The system uses insulation materials to isolate the high-temperature environment, thermally conductive silicone grease to strengthen the heat exchange in the evaporator, and vapor compression refrigeration cycles to absorb internal heat. The coefficient of performance (COP), exergy destruction and exergy efficiency of octane, nonane, and cyclohexane as refrigerants were examined, and the effects of different insulation materials on refrigeration performance were studied from both theoretical and numerical perspectives. The results showed that cyclohexane exhibited the best cooling capacity with a COP of 1.296 and a exergy efficiency of 49.21%. The thermal management system cooling performance is optimal when the insulation material is a vacuum flask, with an effective cooling capacity of 121.7 W.

References

1.
Armstead
,
J. R.
, and
Miers
,
S. A.
,
2014
, “
Review of Waste Heat Recovery Mechanisms for Internal Combustion Engines
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
1
), p.
014001
.
2.
Mohammad
,
M. A.
,
Sakr
,
R. Y.
,
Abd-Rabbo
,
M. A.
, and
Mandour
,
M. M.
,
2022
, “
Experimental Investigation of Heat Transfer From Elliptic Tube Immersed in a Fluidized Bed
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
6
), p.
064502
.
3.
Dai
,
J.
,
Ni
,
Y.
,
Qin
,
S.
,
Huang
,
S.
,
Peng
,
W.
, and
Han
,
W.
,
2018
, “
Geochemical Characteristics of Ultra-Deep Natural Gas in the Sichuan Basin, SW China
,”
Pet. Explor. Dev.
,
45
(
4
), pp.
619
628
.
4.
Lei
,
Q.
,
Xu
,
Y.
,
Yang
,
Z.
,
Cai
,
B.
,
Wang
,
X.
,
Zhou
,
L.
,
Liu
,
H.
,
Xu
,
M.
,
Wang
,
L.
, and
Li
,
S.
,
2021
, “
Progress and Development Directions of Stimulation Techniques for Ultra-Deep Oil and Gas Reservoirs
,”
Pet. Explor. Dev.
,
48
(
1
), pp.
221
231
.
5.
Cheng
,
W.-L.
,
Nian
,
Y.-L.
,
Li
,
T.-T.
, and
Wang
,
C.-L.
,
2014
, “
A Novel Method for Predicting Spatial Distribution of Thermal Properties and Oil Saturation of Steam Injection Well From Temperature Logs
,”
Energy
,
66
, pp.
898
906
.
6.
Du
,
M.-J.
,
Wang
,
Y.-L.
, and
Temuer
,
C.-L.
,
2017
, “
Reproducing Kernel Method for Numerical Simulation of Downhole Temperature Distribution
,”
Appl. Math. Comput.
,
297
, pp.
19
30
.
7.
Jiang
,
L.
,
Xu
,
H.
,
Shi
,
T.
,
Zou
,
A.
,
Mu
,
Z.
, and
Guo
,
J.
,
2015
, “
Downhole Multistage Choke Technology to Reduce Sustained Casing Pressure in a HPHT Gas Well
,”
J. Nat. Gas Eng.
,
26
, pp.
992
998
.
8.
Li
,
Z.
,
Yin
,
J.
,
Zhu
,
D.
, and
Datta-Gupta
,
A.
,
2011
, “
Using Downhole Temperature Measurement to Assist Reservoir Characterization and Optimization
,”
J. Pet. Sci. Eng.
,
78
(
2
), pp.
454
463
.
9.
Li
,
C.
,
Deng
,
S.
,
Li
,
Z.
,
Wu
,
J.
,
Lu
,
B.
, and
Yang
,
J.
,
2022
, “
Development and Application of Dual-Polarization Antenna for Dielectric Logging Sensor
,”
Sensors
,
22
(
19
), p.
7667
.
10.
Li
,
Q.
,
Yao
,
F.-Z.
,
Liu
,
Y.
,
Zhang
,
G.
,
Wang
,
H.
, and
Wang
,
Q.
,
2018
, “
High-Temperature Dielectric Materials for Electrical Energy Storage
,”
Annu. Rev. Mater. Res.
,
48
(
1
), pp.
219
243
.
11.
Lv
,
Y.-G.
,
Chu
,
W.-X.
, and
Wang
,
Q.-W.
,
2022
, “
Thermal Management Systems for Electronics Using in Deep Downhole Environment: A Review
,”
Int. Commun. Heat Mass Transfer
,
139
, p.
106450
.
12.
Soprani
,
S.
,
Nørgaard
,
A. J.
,
Nesgaard
,
C.
, and
Engelbrecht
,
K.
,
2018
, “
Design and Testing of a Heat Transfer Sensor for Well Exploration Tools
,”
Appl. Therm. Eng.
,
141
, pp.
887
897
.
13.
Gao
,
W.
,
Liu
,
K.
,
Dou
,
X.
,
Tang
,
S.
, and
Zhang
,
L.
,
2021
, “
Numerical Investigation on Cooling Effect in the Circuit Cabin of Active Cooling System of Measurement-While-Drilling Instrument Based on Split-Stirling Refrigerator
,”
Case Stud. Therm. Eng.
,
28
, p.
101621
.
14.
Shang
,
B.
,
Ma
,
Y.
,
Hu
,
R.
,
Yuan
,
C.
,
Hu
,
J.
, and
Luo
,
X.
,
2017
, “
Passive Thermal Management System for Downhole Electronics in Harsh Thermal Environments
,”
Appl. Therm. Eng.
,
118
, pp.
593
599
.
15.
Lan
,
W.
,
Zhang
,
J.
,
Peng
,
J.
,
Ma
,
Y.
,
Zhou
,
S.
, and
Luo
,
X.
,
2020
, “
Distributed Thermal Management System for Downhole Electronics at High Temperature
,”
Appl. Therm. Eng.
,
180
, p.
115853
.
16.
Weerasinghe
,
R.
, and
Hughes
,
T.
,
2018
, “
Analysis of Thermal Performance of Geophonic Down-Hole Measuring Tools: A Numerical and Experimental Investigation
,”
Appl. Therm. Eng.
,
137
, pp.
504
512
.
17.
Liu
,
J.
,
Wang
,
Z.
,
Shi
,
K.
,
Li
,
Y.
,
Liu
,
L.
, and
Wu
,
X.
,
2020
, “
Analysis and Modeling of Thermoelectric Power Generation in Oil Wells: A Potential Power Supply for Downhole Instruments Using In-Situ Geothermal Energy
,”
Renew. Energy
,
150
, pp.
561
569
.
18.
Tang
,
S.
,
Liang
,
Z.
, and
Zhu
,
Y.
,
2021
, “
Numerical Investigation on Heat Transfer Characteristics in Electronic Cavity of Downhole Measurement-While-Drilling System
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
1
), p.
011022
.
19.
Wei
,
M.
,
Cai
,
W.
,
Xu
,
M.
, and
Deng
,
S.
,
2022
, “
Active Cooling System for Downhole Electronics in High-Temperature Environments
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
8
), p.
081009
.
20.
Al-Sulaiman
,
F. A.
,
2014
, “
Exergy Analysis of Parabolic Trough Solar Collectors Integrated With Combined Steam and Organic Rankine Cycles
,”
Energy Convers. Manage.
,
77
, pp.
441
449
.
21.
Mohammadi
,
A.
,
Ahmadi
,
M. H.
,
Bidi
,
M.
,
Joda
,
F.
,
Valero
,
A.
, and
Uson
,
S.
,
2017
, “
Exergy Analysis of a Combined Cooling, Heating and Power System Integrated With Wind Turbine and Compressed Air Energy Storage System
,”
Energy Convers. Manage.
,
131
, pp.
69
78
.
22.
Holbein
,
B.
, and
Schulenberg
,
T.
,
2018
, “
Investigation on Refrigerant Transport by Capillary Effect With Fleeces in an Evaporator for a High Temperature Cooling Machine
,”
Int. J. Refrig. Rev. Int. Froid
,
93
, pp.
18
28
.
23.
Sun
,
J.
,
Li
,
W.
, and
Cui
,
B.
,
2020
, “
Energy and Exergy Analyses of R513a as a R134a Drop-In Replacement in a Vapor Compression Refrigeration System
,”
Int. J. Refrig.
,
112
, pp.
348
356
.
24.
Razmi
,
A.
,
Soltani
,
M.
, and
Torabi
,
M.
,
2019
, “
Investigation of an Efficient and Environmentally-Friendly CCHP System Based on CAES, ORC and Compression-Absorption Refrigeration Cycle: Energy and Exergy Analysis
,”
Energy Convers. Manage.
,
195
, pp.
1199
1211
.
25.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2009
, “
Advanced Exergetic Evaluation of Refrigeration Machines Using Different Working Fluids
,”
Energy
,
34
(
12
), pp.
2248
2258
.
26.
Bayrakçi
,
H. C.
, and
Özgür
,
A. E.
,
2009
, “
Energy and Exergy Analysis of Vapor Compression Refrigeration System Using Pure Hydrocarbon Refrigerants
,”
Int. J. Energy Res.
,
33
(
12
), pp.
1070
1075
.
You do not currently have access to this content.