Abstract

The optimal Reynolds-averaged Navier–Stokes (RANS) turbulence model to be used in a Computational Fluid Dynamics (CFD) simulation varies depending on the application. Conventionally, the model is selected from benchmark tests and experience, but its performance is difficult to predict. For this reason, this study presents a cost-effective CFD validation routine, which uses three-dimensional experimental velocity data obtained in replicas of the specific flow system. Magnetic Resonance Velocimetry is used as the measurement technique. Since the objective is only the validation of the turbulence model, the experiment and the simulation are performed with simplified flow conditions, hence stationary isothermal isovolumetric flow without inertial forces. The routine applies a data-matching routine to align the two three-dimensional data sets before they are interpolated on a common grid. Various error metrics are presented, which provide the degree of the CFD modeling error and indicate its source. For demonstration, the validation routine is used to evaluate RANS-CFD results of a three-pass internal cooling system of a high-pressure turbine airfoil used in a small industrial gas turbine. The simulations are performed with the eddy-viscosity-based turbulence model k–ω shear stress transport (SST), the Reynolds-stress Speziale, Sarkar and Gatski (SSG), and baseline-Explicit algebraic Reynolds stress model turbulence (BSL-EARSM) models. The results indicate strong local errors in the examined turbulence models. None of the models performed well enough, underlining that every RANS-CFD application needs to be validated.

References

1.
Jeevahan
,
J.
,
Durai Raj
,
R. B.
,
Mageshwaran
,
G.
,
Sriram
,
V.
,
Britto Joseph
,
G.
, and
Poovannan
,
A.
,
2017
, “
Design and Analysis of Internal Cooling Passage of Gas Turbine Using Computational Fluid Dynamics
,”
Int. J. Ambient Energy
,
40
(
1
), pp.
105
109
.
2.
Amano
,
R. S.
,
Guntur
,
K.
,
Martinez Lucci
,
J.
, and
Ashitaka
,
Y.
,
2010
, “
Study of Flow Through a Stationary Ribbed Channel for Blade Cooling
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
, pp.
471
478
.
3.
Kamath
,
H.
,
Shenoy
,
S. B.
, and
Kini
,
C. R.
,
2017
, “
Effect of V-Shaped Ribs on Internal Cooling of Gas Turbine Blades
,”
J. Eng. Technol. Sci.
,
49
(
4
), pp.
520
533
.
4.
Hahn
,
T.
,
Deakins
,
B.
,
Buechler
,
A.
,
Kumar
,
S.
, and
Amano
,
R. S.
,
2012
, “
Experimental Analysis of the Heat Transfer Variations Within an Internal Passage of a Typical Gas Turbine Blade Using Varied Internal Geometries
,”
Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5: 6th International Conference on Micro- and Nanosystems; 17th Design for Manufacturing and the Life Cycle Conference
,
Chicago, IL
,
Aug. 12–15
.
5.
Bacci
,
T.
,
Gamannossi
,
A.
,
Mazzei
,
L.
,
Picchi
,
A.
,
Winchler
,
L.
,
Carcasci
,
C.
,
Andreini
,
A.
,
Abba
,
L.
, and
Vagnoli
,
S.
,
2017
, “
Experimental and CFD Analyses of a Highly-Loaded Gas Turbine Blade
,”
Energy Procedia
,
126
, pp.
770
777
.
6.
Benson
,
M. J.
,
Van Poppel
,
B. P.
,
Elkins
,
C. J.
, and
Owkes
,
M.
,
2018
, “
Three Dimensional Velocity and Temperature Field Measurements of Internal and External Turbine Blade Features Using Magnetic Resonance Thermometry
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 5B: Heat Transfer
,
Oslo, Norway
,
June 11–15
.
7.
Bruschewski
,
M.
,
Wüstenhagen
,
C.
,
Domnick
,
C.
,
Krewinkel
,
R.
,
Shiau
,
C. C.
,
Grundmann
,
S.
, and
Han
,
J. C.
,
2023
, “
Assessment of the Flow Field and Heat Transfer in a Vane Cooling System Using Magnetic Resonance Velocimetry, Thermochromic Liquid Crystals, and Computational Fluid Dynamics
,”
ASME J. Turbomach.
,
145
(
3
), p.
031010
.
8.
Chen
,
Y.
,
Matalanis
,
C. G.
, and
Eaton
,
J. K.
,
2008
, “
High Resolution PIV Measurements Around a Model Turbine Blade Trailing Edge Film-Cooling Breakout
,”
Exp. Fluids.
,
44
(
2
), pp.
199
209
.
9.
Bruschewski
,
M.
,
John
,
K.
,
Wüstenhagen
,
C.
,
Rehm
,
M.
,
Hadžić
,
H.
,
Pohl
,
P.
, and
Grundmann
,
S.
,
2021
, “
Commissioning of an MRI Test Facility for CFD-Grade Flow Experiments in Replicas of Nuclear Fuel Assemblies and Other Reactor Components
,”
Nucl. Eng. Des.
,
375
, p.
111080
.
10.
Benson
,
M. J.
,
Van Poppel
,
B. P.
,
Elkins
,
C. J.
, and
Owkes
,
M.
,
2019
, “
Three-Dimensional Velocity and Temperature Field Measurements of Internal and External Turbine Blade Features Using Magnetic Resonance Thermometry
,”
ASME J. Turbomach.
,
141
(
7
), p.
071011
.
11.
Wüstenhagen
,
C.
,
John
,
K.
,
Langner
,
S.
,
Brede
,
M.
,
Grundmann
,
S.
, and
Bruschewski
,
M.
,
2021
, “
CFD Validation Using in-Vitro MRI Velocity Data—Methods for Data Matching and CFD Error Quantification
,”
Comput. Biol. Med.
,
131
, p.
10423
.
12.
Rayz
,
V. L.
,
Boussel
,
L.
,
Acevedo-Bolton
,
G.
,
Martin
,
A. J.
,
Young
,
W. L.
,
Lawton
,
M. T.
,
Higashida
,
R.
, and
Saloner
,
D.
,
2008
, “
Numerical Simulations of Flow in Cerebral Aneurysms: Comparison of CFD Results and In Vivo MRI Measurements
,”
ASME J. Biomech. Eng.
,
130
(
5
), p.
051011
.
13.
Kim
,
S.
, and
Kim
,
H.
,
2016
, “
A New Metric of Absolute Percentage Error for Intermittent Demand Forecasts
,”
Int. J. Forecast.
,
32
(
3
), pp.
669
679
.
14.
Elkins
,
C. J.
,
Alley
,
M. T.
,
Saetran
,
L.
, and
Eaton
,
J. K.
,
2009
, “
Three-Dimensional Magnetic Resonance Velocimetry Measurements of Turbulence Quantities in Complex Flow
,”
Exp. Fluids
,
46
(
2
), pp.
285
196
.
15.
Schmidt
,
S.
,
John
,
K.
,
Kim
,
S. J.
,
Flassbeck
,
S.
,
Schmitter
,
S.
, and
Bruschewski
,
M.
,
2021
, “
Reynolds Stress Tensor Measurements Using Magnetic Resonance Velocimetry: Expansion of the Dynamic Measurement Range and Analysis of Systematic Measurement Errors
,”
Exp. Fluids.
,
62
(
6
), p.
121
.
16.
Bruschewski
,
M.
,
Freudenhammer
,
D.
,
Buchenberg
,
W. B.
,
Schiffer
,
H. P.
, and
Grundmann
,
S.
,
2016
, “
Estimation of the Measurement Uncertainty in Magnetic Resonance Velocimetry Based on Statistical Models
,”
Exp. Fluids
,
57
(
5
), p.
83
.
17.
John
,
K.
,
Jahangir
,
S.
,
Gawandalkar
,
U.
,
Hogendoorn
,
W.
,
Poelma
,
C.
,
Grundmann
,
S.
, and
Bruschewski
,
M.
,
2020
, “
Magnetic Resonance Velocimetry in High-Speed Turbulent Flows: Sources of Measurement Errors and a New Approach for Higher Accuracy
,”
Exp. Fluids
,
61
(
2
), pp.
1
17
.
18.
Bruschewski
,
M.
,
Kolkmannn
,
H.
,
John
,
K.
, and
Grundmann
,
S.
,
2019
, “
Phase-contrast Single-Point Imaging With Synchronized Encoding: A More Reliable Technique for In Vitro Flow Quantification.
,”
Magn Reson Med.
,
81
(
5
), pp.
2937
2946
.
19.
Elkins
,
C. J.
, and
Alley
,
M. T.
,
2007
, “
Magnetic Resonance Velocimetry: Applications of Magnetic Resonance Imaging in the Measurement of Fluid Motion
,”
Exp. Fluids
,
43
(
6
), pp.
823
858
.
20.
Menter
,
F. R.
,
1997
, “
Eddy Viscosity Transport Equations and Their Relation to the k-ε Model.
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
879
884
.
21.
Wallin
,
S.
, and
Johansson
,
A. V.
,
2000
, “
An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows
,”
J. Fluid Mech.
,
403
, pp.
89
132
.
22.
Apsley
,
D. D.
, and
Leschziner
,
M. A.
,
1998
, “
A New Low-Reynolds-Number Nonlinear Two-Equation Turbulence Model for Complex Flows
,”
Int. J. Heat Fluid Flow
,
19
(
3
).
23.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
1991
, “
Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
,
227
, pp.
245
272
.
24.
Wörz
,
B.
,
2018
, “Numerical Modelling of Turbulent Flow With Heat Transfer in a Convection Cooled Turbine Blade,”
Doctoral thesis
,
RWTH Aachen University
,
Germany
.
25.
John
,
K.
,
Wüstenhagen
,
C.
,
Schmidt
,
S.
,
Schmitter
,
S.
,
Bruschewski
,
M.
, and
Grundmann
,
S.
,
2022
, “
Reynolds Stress Tensor and Velocity Measurements in Technical Flows by Means of Magnetic Resonance Velocimetry
,”
tm—Techn. Mess.
,
89
(
3
), pp.
201
209
.
26.
Benson
,
M. J.
,
Elkins
,
C. J.
,
Mobley
,
P. D.
,
Alley
,
M. T.
, and
Eaton
,
J. K.
,
2010
, “
Three-Dimensional Concentration Field Measurements in a Mixing Layer Using Magnetic Resonance Imaging
,”
Exp. Fluids
,
49
(
1
), pp.
43
55
.
27.
Bruschewski
,
M.
,
Schmidt
,
S.
,
John
,
K.
,
Grundmann
,
S.
, and
Schmitter
,
S.
,
2021
, “
An Unbiased Method for PRF-Shift Temperature Measurements in Convective Heat Transfer Systems With Functional Parts Made of Metal
,”
Magn. Reson. Imaging
,
75
, pp.
124
133
.
You do not currently have access to this content.