Abstract

The development of prediction models for solar thermal systems has been a research interest for many years. The present study focuses on developing a prediction model for solar box cookers (SBCs) through computational and machine learning (ML) approaches. The prime objective is to forecast cooking load temperatures of SBC through ML techniques such as random forest (RF), k-nearest neighbor (k-NN), linear regression (LR), and decision tree (DT). ML is a commonly used form of artificial intelligence, and it continues to be popular and attractive as it finds new applications every day. A numerical model based on thermal balance is used to generate the dataset for the ML algorithm considering different locations across the world. Experiments on the SBC in Indian weather conditions are conducted from January through March 2022 to validate the numerical model. The temperatures for different components obtained through numerical modeling agree with experimental values with less than 7% maximum error. Although all the developed models can predict the temperature of cooking load, the RF model outperformed the other models. The root-mean-square error (RMSE), determination coefficient (R2), mean absolute error (MAE), and mean square error (MSE) for the RF model are 2.14 (°C), 0.992, 1.45 (°C), and 4.58 (°C), respectively. The regression coefficients indicate that the RF model can accurately predict the thermal parameters of SBCs with great precision. This study will inspire researchers to explore the possibilities of ML prediction models for solar thermal conversion applications.

References

1.
Arunachala
,
U. C.
, and
Kundapur
,
A.
,
2020
, “
Cost-Effective Solar Cookers: A Global Review
,”
Solar Energy
,
207
(
2
), pp.
903
916
.
2.
Aramesh
,
M.
,
Ghalebani
,
M.
,
Kasaeian
,
A.
,
Zamani
,
H.
,
Lorenzini
,
G.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2019
, “
A Review of Recent Advances in Solar Cooking Technology
,”
Renew. Energy
,
140
(
1
), pp.
419
435
.
3.
Ahmed
,
S. M.
,
Al-Amin
,
M. R.
,
Ahammed
,
S.
,
Ahmed
,
F.
,
Saleque
,
A. M.
, and
Rahman
,
M. A.
,
2019
, “
Performance Analysis of Parabolic Solar Cooker With Different Reflective Materials
,”
International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), 2019
,
Dhaka, Bangladesh
,
Jan. 10–12
, pp.
297
302
.
4.
Shanmugan
,
S.
,
Gorjian
,
S.
,
Elsheikh
,
A. H.
,
Essa
,
F. A.
,
Omara
,
Z. M.
, and
Raghu
,
A. V.
,
2020
, “
Investigation Into the Effects of SiO2/TiO2 Nanolayer on the Thermal Performance of Solar Box Type Cooker
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
43
(
21
), pp.
2724
2737
.
5.
Ahmed
,
S. M.
,
Ahmed
,
F.
,
Ahammed
,
S.
,
Al-Amin
,
M. R.
,
Maruf
,
M. N.
,
Saleque
,
A. M.
, and
Rahman
,
M. A.
,
2020
, “
Construction of a Parabolic Solar Cooker Using Mylar Tape for Rohingya Refugee Rehabilitation Program
,”
6th IEEE International Energy Conference (ENERGYCON)
,
Tunisia
,
Sept. 28–Oct. 1
.
6.
Mawire
,
A.
,
Lentswe
,
K.
,
Owusu
,
P.
,
Shobo
,
A.
,
Darkwa
,
J.
,
Calautit
,
J.
, and
Worall
,
M.
,
2020
, “
Performance Comparison of Two Solar Cooking Storage Pots Combined With Wonderbag Slow Cookers for Off-Sunshine Cooking
,”
Sol. Energy
,
208
, pp.
1166
1180
.
7.
Vengadesan
,
E.
, and
Senthil
,
R.
,
2021
, “
Experimental Investigation of the Thermal Performance of a Box Type Solar Cooker Using a Finned Cooking Vessel
,”
Renew. Energy
,
171
, pp.
431
446
.
8.
Atmane
,
I.
,
El Moussaoui
,
N.
,
Kassmi
,
K.
,
Deblecker
,
O.
, and
Bachiri
,
N.
,
2021
, “
Development of an Innovative Cooker (Hot Plate) With Photovoltaic Solar Energy
,”
J. Energy Storage.
,
36
, p.
102399
.
9.
Singh
,
O. K.
,
2021
, “
Development of a Solar Cooking System Suitable for Indoor Cooking and Its Exergy and Enviroeconomic Analyses
,”
Sol. Energy
,
217
, pp.
223
234
.
10.
Tawfik
,
M. A.
,
Sagade
,
A. A.
,
Palma-Behnke
,
R.
,
El-Shal
,
H. M.
, and
Abd Allah
,
W. E.
,
2021
, “
Solar Cooker With Tracking-Type Bottom Reflector: An Experimental Thermal Performance Evaluation of a New Design
,”
Sol. Energy.
,
220
, pp.
295
315
.
11.
Tibebu
,
S.
, and
Hailu
,
A.
,
2021
, “
Design, Construction, and Evaluation of the Performance of Dual-Axis Sun Trucker Parabolic Solar Cooker and Comparison of Cooker
,”
J. Renew. Energy
,
2021
(
1
), pp.
1
10
.
12.
Apaolaza-Pagoaga
,
X.
,
Sagade
,
A. A.
,
Rodrigues Ruivo
,
C.
, and
Carrillo-Andrés
,
A.
,
2021
, “
Performance of Solar Funnel Cookers Using Intermediate Temperature Test Load Under Low Sun Elevation
,”
Sol. Energy
,
225
, pp.
978
1000
.
13.
Al-Nehari
,
H. A.
,
Mohammed
,
M. A.
,
Odhah
,
A. A.
,
Al-attab
,
K. A.
,
Mohammed
,
B. K.
,
Al-Habari
,
A. M.
, and
Al-Fahd
,
N. H.
,
2021
, “
Experimental and Numerical Analysis of Tiltable Box-Type Solar Cooker With Tracking Mechanism
,”
Renew. Energy
,
180
, pp.
954
965
.
14.
Mostafaeipour
,
A.
,
Behzadian
,
M.
,
Fakhrzad
,
M. B.
,
Techato
,
K.
, and
Najafi
,
F.
,
2021
, “
A Strategic Model to Identify the Factors and Risks of Solar Cooker Manufacturing and Use: A Case Study of Razavi Khorasan, Iran
,”
Energy Strategy Rev.
,
33
, p.
100587
.
15.
Apaolaza-Pagoaga
,
X.
,
Carrillo-Andrés
,
A.
, and
Ruivo
,
C. R.
,
2021
, “
New Approach for Analysing the Effect of Minor and Major Solar Cooker Design Changes: Influence of Height Trivet on the Power of a Funnel Cooker
,”
Renew. Energy
,
179
, pp.
2071
2085
.
16.
Reyaz Arif
,
M.
,
Khan
,
M. A.
,
Azhar
,
M.
,
Akhtar
,
N.
, and
Meraj
,
M.
,
2021
, “
Thermal Performance Comparison and Augmentation of Two Identical Box-Type Solar Cookers Operating in Tropical Climatic Conditions
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
6
), p.
061004
.
17.
Sagade
,
A. A.
,
Samdarshi
,
S. K.
,
Sagade
,
N. A.
, and
Panja
,
P. S.
,
2021
, “
Enabling Open Sun Cooling Method-Based Estimation of Effective Concentration Factor/Ratio for Concentrating Type Solar Cookers
,”
Sol. Energy
,
227
, pp.
568
576
.
18.
Kanyowa
,
T.
,
Victor Nyakujara
,
G.
,
Ndala
,
E.
, and
Das
,
S.
,
2021
, “
Performance Analysis of Scheffler Dish Type Solar Thermal Cooking System Cooking 6000 Meals Per Day
,”
Sol. Energy
,
218
, pp.
563
570
.
19.
Coccia
,
G.
,
Aquilanti
,
A.
,
Tomassetti
,
S.
,
Ishibashi
,
A.
, and
Di Nicola
,
G.
,
2021
, “
Design, Manufacture and Test of a Low-Cost Solar Cooker With High-Performance Light-Concentrating Lens
,”
Sol. Energy
,
224
, pp.
1028
1039
.
20.
Ruivo
,
C. R.
,
Carrillo-Andrés
,
A.
, and
Apaolaza-Pagoaga
,
X.
,
2021
, “
Experimental Determination of the Standardised Power of a Solar Funnel Cooker for Low Sun Elevations
,”
Renew. Energy
,
170
, pp.
364
374
.
21.
Neto
,
R. V. P.
,
de Souza
,
L. G. M.
,
de Lima
,
J. C.
,
de Souza
,
L. G. V. M.
, and
Mendes
,
E. V.
,
2021
, “
Theoretical-Experimental Study of a Box-Type Solar Oven Made From Disused Recyclable Elements
,”
Sol. Energy
,
230
, pp.
732
746
.
22.
Ruivo
,
C. R.
,
Apaolaza-Pagoaga
,
X.
,
Di Nicola
,
G.
, and
Carrillo-Andrés
,
A.
,
2022
, “
On the Use of Experimental Measured Data to Derive the Linear Regression Usually Adopted for Determining the Performance Parameters of a Solar Cooker
,”
Renew. Energy
,
181
, pp.
105
115
.
23.
Verma
,
S.
,
Banerjee
,
S.
, and
Das
,
R.
,
2022
, “
A Fully Analytical Model of a Box Solar Cooker With Sensible Thermal Storage
,”
Sol. Energy
,
233
, pp.
531
542
.
24.
Engoor
,
G. G.
,
Shanmugam
,
S.
, and
Veerappan
,
A. R.
,
2022
, “
Energy and Exergy Based Study on a Box Type Solar Cooker Coupled With a Fresnel Lens Magnifier
,”
Int. J. Green Energy.
,
20
(
4
), pp.
353
371
.
25.
Anilkumar
,
B. C.
,
Maniyeri
,
R.
, and
Anish
,
S.
,
2021
, “
Design, Fabrication and Performance Assessment of a Solar Cooker With Optimum Composition of Heat Storage Materials
,”
Environ. Sci. Pollut. Res.
,
28
(
45
), pp.
63629
63637
.
26.
Anilkumar
,
B. C.
,
Maniyeri
,
R.
, and
Anish
,
S.
,
2021
, “
Optimum Selection of Phase Change Material for Solar Box Cooker Integrated With Thermal Energy Storage Unit Using Multi-Criteria Decision-Making Technique
,”
J. Energy Storage
,
40
, p.
102807
.
27.
Binark
,
A. K.
, and
Turkmen
,
N.
,
1996
, “
Modelling of a Hot Box Solar Cooker
,”
Energy Conversion Manage.
,
37
(
3
), pp.
303
310
.
28.
Guidara
,
Z.
,
Souissi
,
M.
,
Morgenstern
,
A.
, and
Maalej
,
A.
,
2017
, “
Thermal Performance of a Solar Box Cooker With Outer Reflectors: Numerical Study and Experimental Investigation
,”
Sol. Energy
,
158
, pp.
347
359
.
29.
Soria-Verdugo
,
A.
,
2015
, “
Experimental Analysis and Simulation of the Performance of a Box-Type Solar Cooker
,”
Energy Sustain. Dev.
,
29
, pp.
65
71
.
30.
Khallaf
,
A. M.
,
Tawfik
,
M. A.
,
El-Sebaii
,
A. A.
, and
Sagade
,
A. A.
,
2020
, “
Mathematical Modeling and Experimental Validation of the Thermal Performance of a Novel Design Solar Cooker
,”
Sol. Energy
,
207
, pp.
40
50
.
31.
Chatelain
,
T.
,
Mauree
,
D.
,
Taylor
,
S.
,
Bouvard
,
O.
,
Fleury
,
J.
,
Burnier
,
L.
, and
Schuler
,
A.
,
2019
, “
Solar Cooking Potential in Switzerland: Nodal Modelling and Optimization
,”
Sol. Energy
,
194
, pp.
788
803
.
32.
Kurt
,
H.
,
Atik
,
K.
,
Ozkaymak
,
M.
, and
Recebli
,
Z.
,
2008
, “
Thermal Performance Parameters Estimation of Hot Box Type Solar Cooker by Using Artificial Neural Network
,”
Int. J. Therm. Sci.
,
47
(
2
), pp.
192
200
.
33.
Mukaro
,
R.
,
Campus
,
M.
, and
Africa
,
S.
,
2021
, “
Comparison of Experimental and Artificial Neural Network-Estimated Thermal Performance Parameters for a Hot-Box Solar Cooker
,”
Informatica
,
32
, pp.
2
15
.
34.
Siddique
,
M. Z.
,
Badar
,
A. W.
,
Jakhrani
,
S. A.
,
Butt
,
F. S.
,
Siddiqui
,
M. S.
,
Khan
,
M. Y.
, and
Mahmood
,
K.
,
2022
, “
Analytical Modeling and Performance Analysis of a Solar Cooker cum Dryer Unit
,”
Energy Sources, Part A: Recovery, Utilization, Environ. Effects
, pp.
1
26
.
35.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
, 4th ed.,
John Wiley & Sons
,
New York
.
36.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Machine Learn.
,
45
(
1
), pp.
5
32
.
37.
Ahmad
,
M. W.
,
Reynolds
,
J.
, and
Rezgui
,
Y.
,
2018
, “
Predictive Modelling for Solar Thermal Energy Systems: A Comparison of Support Vector Regression, Random Forest, Extra Trees and Regression Trees
,”
J. Clean. Prod.
,
203
, pp.
810
821
.
38.
Harmim
,
A.
,
Belhamel
,
M.
,
Boukar
,
M.
, and
Amar
,
M.
,
2010
, “
Experimental Investigation of a Box-Type Solar Cooker With a Finned Absorber Plate
,”
Energy
,
35
(
9
), pp.
3799
3802
.
39.
Riva
,
F.
,
Rocco
,
M. V.
,
Gardumi
,
F.
,
Bonamini
,
G.
, and
Colombo
,
E.
,
2017
, “
Design and Performance Evaluation of Solar Cookers for Developing Countries: The Case of Mutoyi, Burundi
,”
Int. J. Energy Res.
,
41
(
14
), pp.
2206
2220
.
40.
Milikias
,
E.
,
Bekele
,
A.
, and
Venkatachalam
,
C.
,
2020
, “
Performance Investigation of Improved Box-Type Solar Cooker With Sensible Thermal Energy Storage
,”
Int. J. Sustain. Eng.
,
14
(
3
), pp.
507
516
.
41.
Yadav
,
V.
,
Kumar
,
Y.
,
Agrawal
,
H.
, and
Yadav
,
A.
,
2017
, “
Thermal Performance Evaluation of Solar Cooker With Latent and Sensible Heat Storage Unit for Evening Cooking
,”
Aust. J. Mech. Eng.
,
15
(
2
), pp.
93
102
.
42.
Singh
,
M.
, and
Sethi
,
V. P.
,
2018
, “
On the Design, Modelling and Analysis of Multi-Shelf Inclined Solar Cooker-Cum-Dryer
,”
Sol. Energy
,
162
, pp.
620
636
.
43.
Zamani
,
H.
,
Mahian
,
O.
,
Rashidi
,
I.
,
Lorenzini
,
G.
, and
Wongwises
,
S.
,
2017
, “
Exergy Optimization of a Double-Exposure Solar Cooker by Response Surface Method
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1
), p.
011003
.
44.
Saxena
,
A.
,
Cuce
,
E.
,
Tiwari
,
G. N.
, and
Kumar
,
A.
,
2020
, “
Design and Thermal Performance Investigation of a Box Cooker With Flexible Solar Collector Tubes: An Experimental Research
,”
Energy
,
206
, pp.
118144
.
45.
Ahmed
,
S. M. M.
,
Al-Amin
,
M. R.
,
Ahammed
,
S.
,
Ahmed
,
F.
,
Saleque
,
A. M.
, and
Abdur Rahman
,
M.
,
2020
, “
Design, Construction and Testing of Parabolic Solar Cooker for Rural Households and Refugee Camp
,”
Sol. Energy
,
205
, pp.
230
240
.
46.
Ebersviller
,
S. M.
, and
Jetter
,
J. J.
,
2020
, “
Evaluation of Performance of Household Solar Cookers
,”
Sol. Energy
,
208
, pp.
166
172
.
47.
Abd-Elhady
,
M. S.
,
Abd-Elkerim
,
A. N. A.
,
Ahmed
,
S. A.
,
Halim
,
M. A.
, and
Abu-Oqual
,
A.
,
2020
, “
Study the Thermal Performance of Solar Cookers by Using Metallic Wires and Nanographene
,”
Renew. Energy
,
153
, pp.
108
116
.
48.
Zafar
,
H. A.
,
Badar
,
A. W.
,
Butt
,
F. S.
,
Khan
,
M. Y.
, and
Siddiqui
,
M. S.
,
2019
, “
Numerical Modeling and Parametric Study of an Innovative Solar Oven
,”
Sol. Energy
,
187
, pp.
411
426
.
49.
Palanikumar
,
G.
,
Shanmugan
,
S.
,
Chithambaram
,
V.
,
Gorjian
,
S.
,
Pruncu
,
C. I.
,
Essa
,
F. A.
,
Kabeel
,
A. E.
, et al
,
2021
, “
Thermal Investigation of a Solar Box-Type Cooker With Nanocomposite Phase Change Materials Using Flexible Thermography
,”
Renew. Energy
,
178
, pp.
260
282
.
50.
Yettou
,
F.
,
Gama
,
A.
,
Azoui
,
B.
,
Malek
,
A.
, and
Panwar
,
N. L.
,
2019
, “
Experimental Investigation and Thermal Modelling of Box and Parabolic Type Solar Cookers for Temperature Mapping
,”
J. Therm. Anal. Calorim.
,
136
(
3
), pp.
1347
1364
.
51.
Sharma
,
S. D.
,
Buddhi
,
D.
,
Sawhney
,
R. L.
, and
Sharma
,
A.
,
2000
, “
Design, Development and Performance Evaluation of a Latent Heat Storage Unit for Evening Cooking in a Solar Cooker
,”
Energy Conversion Manage.
,
41
(
14
), pp.
1497
1508
.
52.
Mawire
,
A.
,
Lentswe
,
K.
, and
Owusu
,
P.
,
2022
, “
Performance of Two Solar Cooking Storage Pots Using Parabolic Dish Solar Concentrators During Solar and Storage Cooking Periods With Different Heating Loads
,”
Res. Eng.
,
13
, p.
100336
.
53.
Cuce
,
E.
,
2018
, “
Improving Thermal Power of a Cylindrical Solar Cooker via Novel Micro/Nano Porous Absorbers: A Thermodynamic Analysis With Experimental Validation
,”
Sol. Energy.
,
176
, pp.
211
219
.
54.
Anilkumar
,
B. C.
,
Maniyeri
,
R.
, and
Anish
,
S.
,
2021
, “
Thermal Performance Assessment of a Cylindrical Box Solar Cooker Fitted With Decahedron Outer Reflector
,”
Energy Environ.
, p.
0958305X2110707
.
You do not currently have access to this content.