Abstract

In this study, thermal performance of the forced cross-flow water cooling tower is numerically investigated by using the commercial computational fluid dynamics software ansys-cfx. The temperature variation between inlet and outlet of the water, namely, process water temperature, is the main extracted result of simulations. Additionally, the cooling range (CR) that is the difference between inlet water temperature and outlet water temperature is the second representative result of the analysis. The effect of air velocity (Va), water droplet diameter (dw), and water temperature at the inlet of tower (Tw) are the variables that are considered to be the effective design parameters on the process temperature of the water. The process water temperature decreases, but the cooling range increases when the air velocity increases. When the inlet water temperature increases, the process water temperature and the cooling range also increase. On the other hand, the process water temperature decreases with the decreasing diameter of water droplets.

References

1.
Alkhedhair
,
A.
,
Gurgenci
,
H.
,
Jahn
,
I.
,
Guan
,
Z.
, and
He
,
S.
,
2013
, “
Numerical Simulation of Water Spray for Pre-Cooling of Inlet Air in Natural Draft Dry Cooling Towers
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
416
424
.
2.
Zhang
,
Q.
,
Wu
,
J.
,
Zhang
,
G.
,
Zhou
,
J.
,
Guo
,
Y.
, and
Shen
,
W.
,
2012
, “
Calculations on Performance Characteristics of Counterflow Reversibly Used Cooling Towers
,”
Int. J. Refrig.
,
35
(
2
), pp.
424
433
.
3.
Asvapoositku
,
W.
, and
Kuansathan
,
M.
,
2014
, “
Comparative Evaluation of Hybrid (Dry/Wet) Cooling Tower Performance
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
83
93
.
4.
Gan
,
G.
,
Riffa
,
S. B.
,
Shao
,
L.
, and
Doherty
,
P.
,
2001
, “
Application of CFD to Closed-Wet Cooling Towers
,”
Appl. Therm. Eng.
,
21
(
1
), pp.
79
92
.
5.
Şengil
,
B. E.
,
2019
, “
Numerical And Experimental Study for Water Cooling Tower Capacity Increase
,”
M.Sc. thesis
,
Department of Mechanical Engineering, Graduate School of Applied and Natural Sciences, Manisa Celal Bayar University
,
Manisa, Turkey
.
6.
Pirunkaset
,
M.
,
2010
, “
Simulation of a Counter-Flow and Cross-Flow Cooling Tower by the Stepwise Integration Method
,”
Nat. Sci.
,
44
, pp.
972
981
.
7.
Murugaveni
,
S.
, and
Shameer
,
P.
,
2015
, “
Analysis of Forced Draft Cooling Tower Performance Using ANSYS Fluent Software
,”
Int. J. Res. Eng. Technol.
,
4
(
4
), pp.
217
229
.
8.
Islam
,
K. M.
,
Mahmud
,
T.
, and
Salam
,
B.
,
2014
, “
Experımental Study of Forced Draft Cross Flow Wet Coolıng Tower Usıng Splash Type Fıll
,”
Proceedings of the International Conference on Mechanical Engineering and Renewable Energy (ICMERE2013)
,
Chittagong, Bangladesh
,
May 1–3
, pp.
1
5
.
9.
Zargar
,
A.
,
Kodkani
,
A.
,
Peris
,
A.
,
Clare
,
E.
,
Cook
,
J.
,
Karupothula
,
P.
,
Vickers
,
B.
,
Flynn
,
M. R.
, and
Secanell
,
M.
,
2022
, “
Numerical Analysis of a Counter-Flow Wet Cooling Tower and Its Plume
,”
Int. J. Thermofluids
,
14
, p.
100139
.
10.
Li
,
H. W.
,
Duan
,
W. B.
,
Wang
,
S. B.
,
Zhang
,
X. L.
,
Sun
,
B.
, and
Hong
,
W. P.
,
2018
, “
Numerical Simulation Study on Different Spray Rates of Three-Area Water Distribution in Wet Cooling Tower of Fossil-Fuel Power Station
,”
Appl. Therm. Eng.
,
130
, pp.
1558
1567
.
11.
Zhang
,
L.
,
Zhou
,
X.
,
Li
,
J.
,
Yu
,
Y.
, and
Feng
,
J.
,
2022
, “
Numerical Study of the Dynamic Response of the Natural Draft Dry Cooling Tower Under Crosswind Condition
,”
Case Stud. Therm. Eng.
,
34
, pp.
1
14
.
12.
Vıjayaragavan
,
A.
,
Arunraj
,
S.
,
Parthasarthy
,
P.
, and
Raj
,
M. S.
,
2016
, “
Performance and Analysis of Coolıng Tower
,”
Int. Res. J. Eng. Technol.
,
3
(
4
), pp.
1321
1324
.
13.
Chen
,
R.
,
Zhang
,
D.
,
Zhang
,
Z.
,
Han
,
Q.
,
He
,
S.
, and
Gao
,
M.
,
2021
, “
Numerical Study Regarding Cooling Capacity for Non-Equidistant Fillings in Large-Scale Wet Cooling Towers
,”
Case Studies Therm. Eng.
,
26
, pp.
1
14
.
14.
Zheng
,
Z.
,
Zhang
,
D.
,
Jiang
,
L.
,
Zhang
,
Z.
,
He
,
S.
, and
Gao
,
M.
,
2021
, “
Numerical Simulation on Influence of Noise Barrier on Thermal Performance for Natural Draft Wet Cooling Towers
,”
Case Studies Therm. Eng.
,
28
, pp.
1
13
.
15.
Wan
,
D.
,
Gao
,
S.
,
Liu
,
M.
,
Li
,
S.
, and
Zhao
,
Y.
,
2020
, “
Effect of Cooling Water Salinity on the Cooling Performance of Natural Draft Wet Cooling Tower
,”
Int. J. Heat Mass Transfer
,
161
, pp.
1
14
.
16.
Zhang
,
Z.
,
Zhang
,
D.
,
Han
,
Q.
,
Wu
,
F.
,
Gao
,
M.
, and
He
,
S.
,
2021
, “
Numerical Simulation on the Three Kinds of Water Droplet Diameter Treatments in Rain Zone of Wet Cooling Towers
,”
Int. J. Heat Mass Transfer
,
170
, p.
121054
.
17.
Zhou
,
X.
,
Wang
,
W.
,
Chen
,
L.
,
Yang
,
L.
, and
Du
,
X.
,
2021
, “
Numerical Investigation on Novel Water Distribution for Natural Draft Wet Cooling Tower
,”
Int. J. Heat Mass Transfer
,
181
, p.
121886
, Article No: 121886.
18.
Ma
,
H.
,
Cai
,
L.
, and
Si
,
F.
,
2022
, “
Numerical Study on the Effects of Layout Compactness of the Annular-Aligned Moist Media on Thermo-Hydraulic Performance of an Indirect Dry Cooling Tower
,”
Appl. Therm. Eng.
,
213
, pp.
1
25
.
19.
Naik
,
B. K.
, and
Muthukumar
,
P.
,
2017
, “
A Novel Approach for Performance Assessment of Mechanical Draft Wet Cooling Towers
,”
Appl. Therm. Eng.
,
12
, pp.
14
26
.
20.
Alavi
,
S. R.
, and
Rahmati
,
M.
,
2016
, “
Experimental Investigation on Thermal Performance of Natural Draft Wet Cooling Towers Employing an Innovative Wind-Creator Setup
,”
Energy Convers. Manage.
,
122
, pp.
504
514
.
21.
Cengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2006
, “
Fluid Mechanics Fundamentals and Applications
,”
Mcgraw-Hill Series in Mechanical Engineering
, Chapter 9,
400
431
.
22.
Korkmaz
,
C.
, and
Kacar
,
İ
,
2021
, “
Determining the Optimum Mesh Element for Computational Fluid Dynamics Simulations
,” TARMEK, 1.
23.
Emad
,
S. M.
,
Qusay
,
K. J.
, and
Kanbar
,
M. W.
,
2017
, “
Experimental Study on Promoting the Thermal Performance of a Forced Draft Counter Flow Evaporative Cooling Tower
,”
Adv. Nat. Appl. Sci.
,
11
(
2
), pp.
36
47
.
You do not currently have access to this content.