Abstract

The present study deals with the optimization of a counter flow vortex tube with a straight single intake section, straight dual intake section, and convergent dual intake section vortex tube model for different physical and flow parameters. The effect of variation of convergent angles (θ), intake pressures, and a number of inlet sections on the flow separation has been analyzed in the present study. ANSYS FLUENT software has been used to simulate flow considering air as a working fluid. Moreover, some physical and flow parameters such as intake pressure, cold temperature gradient (ΔTc), pressure loss ratio, cold mass fraction, and hot temperature gradient (ΔTh) have been studied to optimize the vortex tube. The coefficient of performance has been compared for various convergent angles from 1 deg to 5 deg. The result has been validated by the experimental and numerical studies performed previously. Moreover, the exergy analysis has also been conducted for the convergent dual intake vortex tube for various convergent angles, cold mass fraction, and intake pressure. The study concludes that the convergent vortex tube having a dual inlet section, 5-deg angle shows the optimized result for all the mass fraction and intake pressure, compared to a straight single intake section and straight dual intake vortex tube.

References

1.
Joseph
,
R.G.
,
Giration Des Fluides Sarl
,
1934
,
Method and Apparatus for Obtaining From Alpha Fluid Under Pressure Two Currents of Fluids at Different Temperatures
. U.S. Patent No. 1,952,281.
2.
Skye
,
H. M.
,
Nellis
,
G. F.
, and
Klein
,
S. A.
,
2006
, “
Comparison of CFD Analysis to Empirical Data in a Commercial Vortex Tube
,”
Int. J. Refrig.
,
29
(
1
), pp.
71
80
.
3.
Rafiee
,
S. E.
, and
Rahimi
,
M.
,
2013
, “
Experimental Study and Three-Dimensional (3D) Computational Fluid Dynamics (CFD) Analysis on the Effect of the Convergence Ratio, Pressure Inlet and Number of Nozzle Intake on Vortex Tube Performance–Validation and CFD Optimization
,”
Energy
,
63
, pp.
195
204
.
4.
Qyyum
,
M. A.
,
Noon
,
A. A.
,
Wei
,
F.
, and
Lee
,
M.
,
2019
, “
Vortex Tube Shape Optimization for Hot Control Valves Through Computational Fluid Dynamics
,”
Int. J. Refrig.
,
102
, pp.
151
158
.
5.
Wang
,
W.
,
Wang
,
C.
,
Wei
,
Y.
, and
Song
,
W.
,
2018
, “
A Study on the Wake Structure of the Dual Vortex Tubes in a Ventilated Supercavity
,”
J. Mech. Sci. Technol.
,
32
(
4
), pp.
1601
1611
.
6.
Cebeci
,
I.
,
Kirmaci
,
V.
, and
Topcuoglu
,
U.
,
2016
, “
The Effects of Orifice Nozzle Number and Nozzle Made of Polyamide Plastic and Aluminum With Different Inlet Pressures on Heating and Cooling Performance of Counter Flow Ranque–Hılsch Vortex Tubes: An Experimental Investigation
,”
Int. J. Refrig.
,
72
, pp.
140
146
.
7.
Shamsoddini
,
R.
, and
Abolpour
,
B.
,
2018
, “
A Geometric Model for a Vortex Tube Based on Numerical Analysis to Reduce the Effect of Nozzle Number
,”
Int. J. Refrig.
,
94
, pp.
49
58
.
8.
Kumar
,
A.
, and
Subudhi
,
S.
,
2017
, “
Cooling and Dehumidification Using Vortex Tube
,”
Appl. Therm. Eng.
,
122
, pp.
181
193
.
9.
Godbole
,
R.
, and
Ramakrishna
,
P. A.
,
2020
, “
Design Guidelines for the Vortex Tube
,”
Exp. Therm. Fluid. Sci.
,
118
, p.
110169
.
10.
Thakare
,
H. R.
, and
Parekh
,
A. D.
,
2017
, “
Experimental Investigation & CFD Analysis of Ranque– Hilsch Vortex Tube
,”
Energy
,
133
, pp.
284
298
.
11.
Guo
,
X.
, and
Zhang
,
B.
,
2018
, “
Computational Investigation of Precessing Vortex Breakdown and Energy Separation in a Ranque–Hilsch Vortex Tube
,”
Int. J. Refrig.
,
85
, pp.
42
57
.
12.
Kaya
,
H.
,
Uluer
,
O.
,
Kocaoğlu
,
E.
, and
Kirmaci
,
V.
,
2019
, “
Experimental Analysis of Cooling and Heating Performance of Serial and Parallel Connected Counter-Flow Ranquee–Hilsch Vortex Tube Systems Using Carbon Dioxide as a Working Fluid
,”
Int. J. Refrig.
,
106
, pp.
297
307
.
13.
Majidi
,
D.
,
Alighardashi
,
H.
, and
Farhadi
,
F.
,
2018
, “
Best Vortex Tube Cascade for Highest Thermal Separation
,”
Int. J. Refrig.
,
85
, pp.
282
291
.
14.
Thakare
,
H. R.
, and
Parekh
,
A. D.
,
2020
, “
Experimental Investigation of Ranque—Hilsch Vortex Tube and Techno–Economical Evaluation of its Industrial Utility
,”
Appl. Therm. Eng.
,
169
, p.
114934
.
15.
Bazgir
,
A.
,
Heydari
,
A.
,
Bazooyar
,
B.
,
Mohammadniakan
,
M.
, and
Nabhani
,
N.
,
2020
, “
Numerical Investigation of the Energy Separation Effect and Flow Mechanism Inside Convergent, Straight, and Divergent Double-Sleeve RHVT
,”
Heat Transfer- Asian Res.
,
49
(
1
), pp.
533
564
.
16.
Hu
,
Z.
,
Li
,
R.
,
Yang
,
X.
,
Yang
,
M.
, and
Zhang
,
Y.
,
2020
, “
Numerical Simulation for Three-Dimensional Flow in a Vortex Tube With Different Turbulence Models
,”
Numer. Heat Transfer A: Appl
,
77
(
2
), pp.
121
133
.
17.
Talawo
,
R. C.
,
Mtopi Fotso
,
B. E.
, and
Fogue
,
M.
,
2021
, “
Numerical Study of a Solar Thermoelectric Generator With Vortex Tube for Hybrid Vehicle
,”
Numer. Heat Transfer A: Appl
,
80
(
1–2
), pp.
43
61
.
18.
Liang
,
F.
,
Tang
,
G.
,
Xu
,
C.
,
Wang
,
C.
,
Wang
,
Z.
,
Wang
,
J.
, and
Li
,
N.
,
2021
, “
Experimental Investigation on Improving the Energy Separation Efficiency of Vortex Tube by Optimizing the Structure of Vortex Generator
,”
Appl. Therm. Eng.
,
195
, p.
117222
.
19.
Manimaran
,
R.
,
2021
, “
Numerical Investigations of Hydrogen and Air Mixture With Vortex Tube and Duct Combinations
,”
Int. J. Hydrogen Energy
,
46
(
36
), pp.
19140
19157
.
20.
Singh
,
R. K.
,
Pramanick
,
A. K.
, and
Rana
,
S. C.
,
2022
, “
Computational Study of Temperature Separation for a Three-Dimensional Vortex Tube With Cold Exit Diameter and Nozzle Number Variation
,”
Int. J. Ambient Energy
,
43
(
1
), pp.
1
15
.
21.
Liang
,
F.
,
Zeng
,
Q.
,
Tang
,
G.
,
Xin
,
L.
,
Li
,
Q.
, and
Li
,
N.
,
2022
, “
Numerical Investigation on the Effect of Convergent-Divergent Tube on Energy Separation Characteristic of Vortex Tube
,”
Int. Commun. Heat Mass Transfer
,
133
, p.
105927
.
22.
Cartlidge
,
J.
,
Chowdhury
,
N.
, and
Povey
,
T.
,
2022
, “
Performance Characteristics of a Divergent Vortex Tube
,”
Int. J. Heat Mass Transfer
,
186
, p.
122497
.
23.
Cebeci
,
T.
, and
Bradshaw
,
P.
,
1977
,
Momentum Transfer in Boundary Layers
,
Hemisphere Publishing
,
New York
,
407
.
24.
Launder
,
B.
, and
Spalding
,
D.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Energy
,
3
(
2
), pp.
269
289
.
25.
Viegas
,
J.
,
Rubesin
,
M.
, and
Horstman
,
C.
,
1985
, “
On the Use of Wall Functions as Boundary Conditions for Two-Dimensional Separated Compressible Flows
,” AIAA Paper No. 1985-180.
26.
Jayatilleke
,
C. L. V.
,
1966
, “
The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sub-Layer to Momentum and Heat Transfer
,”
Ph.D. thesis
,
University of London
,
London
.
27.
Stephan
,
K.
,
Lin
,
S.
,
Durst
,
M.
,
Seher
,
F.
, and
Huang
,
D.
,
1983
, “
An Investigation of Energy Separation in a Vortex Tube
,”
Int. J. Heat Mass Transfer
,
26
(
3
), pp.
341
348
.
28.
Rakopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
1997
, “
Simulation and Exergy Analysis of Transient Diesel-Engine Operation
,”
Energy
,
22
(
9
), pp.
875
885
.
29.
Akpinar
,
E. K.
, and
Hepbasli
,
A.
,
2007
, “
A Comparative Study on Exergetic Assessment of Two Ground-Source (Geothermal) Heat Pump Systems for Residential Applications
,”
Build. Environ.
,
42
(
5
), pp.
2004
2013
.
30.
Kotas
,
T. J.
,
1985
,
The Exergy Method of Thermal Plant Analysis
,
Anchor Brendon Ltd
,
Tiptree, Essex
.
31.
Dincer
,
K.
, and
Baskaya
,
S.
,
2009
, “
Assessment of Plug Angle Effect on Exergy Efficiency of Counterflow RanqueeHilsch Vortex Tubes With the Exergy Analysis Method
,”
J. Fac. Eng. Archit. Gazi Univ.
,
24
, pp.
533
538
.
You do not currently have access to this content.