Abstract

As rotating detonation engines (RDEs) progress in maturity, the importance of monitoring advancements toward development of active control becomes more critical. Experimental RDE data processing at time scales which satisfy real-time diagnostics will likely require the use of machine learning. This study aims to develop and deploy a novel real-time monitoring technique capable of determining detonation wave number, direction, frequency, and individual wave speeds throughout experimental RDE operational windows. To do so, the diagnostic integrates image classification by a convolutional neural network (CNN) and ionization current signal analysis. Wave mode identification through single-image CNN classification bypasses the need to evaluate sequential images and offers instantaneous identification of the wave mode present in the RDE annulus. Real-time processing speeds are achieved due to low data volumes required by the methodology, namely one short-exposure image and a short window of sensor data to generate each diagnostic output. The diagnostic acquires live data using a modified experimental setup alongside Pylon and PyDAQmx libraries within a python data acquisition environment. Lab-deployed diagnostic results are presented across varying wave modes, operating conditions, and data quality, currently executed at 3–4 Hz with a variety of iteration speed optimization options to be considered as future work. These speeds exceed that of conventional techniques and offer a proven structure for real-time RDE monitoring. The demonstrated ability to analyze detonation wave presence and behavior during RDE operation will certainly play a vital role in the development of RDE active control, necessary for RDE technology maturation toward industrial integration.

References

1.
Nordeen
,
C.
,
Schwer
,
D.
,
Schauer
,
F.
,
Hoke
,
J.
,
Cetegen
,
B.
, and
Barber
,
T.
,
2011
, “
Thermodynamic Modeling of a Rotating Detonation Engine
,”
49th AIAA Aerospace Sciences Meeting
,
Orlando, FL
,
Jan. 4–7
.
2.
Johnson
,
K.
,
Ferguson
,
D.
, and
Nix
,
A.
,
2020
, “
Validation of Cross-Correlation Detonation Wave Mode Identification Through High-Speed Image Analysis
,”
AIAA SciTech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
.
3.
Bluemner
,
R.
,
Bohon
,
M. D.
,
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
,
2018
, “
Dynamics of Counter-Rotating Wave Modes in an RDC
,”
2018 Joint Propulsion Conference
,
Cincinnati, OH
,
July 9–11
.
4.
Bluemner
,
R.
,
Bohon
,
M. D.
,
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
,
2018
, “
Single and Counter-Rotating Wave Modes in an RDC
,”
2018 AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
Jan. 8–12
.
5.
Bohon
,
M. D.
,
Bluemner
,
R.
,
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
,
2018
, “
Cross-Correlation as a Tool for Measuring RDC Wave Speed, Direction, and Complexity
,”
2018 Joint Propulsion Conference
,
Cincinnati, OH
,
July 9–11
.
6.
Zahn
,
A.
,
Knight
,
E.
,
Anand
,
V.
,
Jodele
,
J.
, and
Gutmark
,
E. J.
,
2018
, “
Examination of Counter-Rotating Detonation Waves Using Cross-Correlation
,”
2018 Joint Propulsion Conference
,
Cincinnati, OH
,
July 9–11
.
7.
George
,
A. C. S.
,
Kumar
,
V. A.
,
Driscoll
,
R. D.
, and
Gutmark
,
E. J.
,
2016
, “
A Correlation-Based Method to Quantify the Operating State in a Rotating Detonation Combustor
,”
54th AIAA Aerospace Sciences Meeting
,
San Diego, CA
,
Jan. 4–8
.
8.
Bennewitz
,
J. W.
,
Bigler
,
B. R.
,
Hargus
,
W. A.
,
Danczyk
,
S. A.
, and
Smith
,
R. D.
,
2018
, “
Characterization of Detonation Wave Propagation in a Rotating Detonation Rocket Engine Using Direct High-Speed Imaging
,”
2018 Joint Propulsion Conference
,
Cincinnati, OH
,
July 9–11
.
9.
Bohon
,
M. D.
,
Bluemner
,
R.
,
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
,
2019
, “
High-Speed Imaging of Wave Modes in an RDC
,”
Exp. Therm. Fluid. Sci.
,
102
, pp.
28
37
.
10.
Athmanathan
,
V.
,
Ayers
,
Z.
,
Fisher
,
J.
,
Braun
,
J.
,
Andreoli
,
V.
,
Cuadrado
,
D. G.
,
Fugger
,
C. A.
, et al
,
2020
, “
High Speed Imaging of Injection Backflow and Recovery in a Turbine-Integrated High-Pressure Optical RDE (THOR)
,”
AIAA SciTech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
.
11.
Chacon
,
F.
, and
Gamba
,
M.
,
2019
, “
Study of Parasitic Combustion in an Optically Accessible Continuous Wave Rotating Detonation Engine
,”
AIAA SciTech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
.
12.
Athmanathan
,
V.
,
Fisher
,
J. M.
,
Ayers
,
Z.
,
Cuadrado
,
D. G.
,
Andreoli
,
V.
,
Braun
,
J.
,
Meyer
,
T.
,
Paniagua
,
G.
,
Fugger
,
C. A.
, and
Roy
,
S.
,
2019
, “
Turbine-Integrated High-Pressure Optical RDE (THOR) for Injection and Detonation Dynamics Assessment
,”
AIAA Propulsion and Energy 2019 Forum
,
Indianapolis, IN
,
Aug. 12–22
.
13.
Johnson
,
K. B.
,
Ferguson
,
D. H.
,
Tempke
,
R. S.
, and
Nix
,
A. C.
,
2021
, “
Application of a Convolutional Neural Network for Wave Mode Identification in a Rotating Detonation Combustor Using High-Speed Imaging
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
6
), p.
061021
.
14.
Johnson
,
K.
,
Ferguson
,
D. H.
, and
Nix
,
A. C.
,
2020
, “
Individual Wave Detection and Tracking Within a Rotating Detonation Engine Through Computer Vision Object Detection Applied to High-Speed Images
,”
AIAA SciTech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
.
15.
Johnson
,
K. B.
,
Ferguson
,
D. H.
, and
Nix
,
A. C.
,
2022
, “
Time Series Classification Within a Rotating Detonation Engine Through Deep Convolutional Neural Networks Applied to High-Speed Pressure and Ion Probe Data
,”
AIAA SciTech 2022 Forum
,
San Diego, CA
,
Jan. 3–7
.
16.
Santos-Victor
,
J. A.
,
Costeira
,
J. P.
,
Tomé
,
J. A. B.
, and
Sentieiro
,
J. J. S.
,
1993
, “
A Computer Vision System for the Characterization and Classification of Flames in Glass Furnaces
,”
IEEE Trans. Ind. Appl.
,
29
(
3
), pp.
470
78
.
17.
Grogan
,
K. P.
, and
Ihme
,
M.
,
2018
, “
Identification of Governing Physical Processes of Irregular Combustion Through Machine Learning
,”
Shock Waves
,
28
(
5
), pp.
941
54
.
18.
Barwey
,
S.
,
Prakash
,
S.
,
Hassanaly
,
M.
, and
Ramen
,
V.
,
2021
, “
Data-Driven Classification and Modeling of Combustion Regimes in Detonation Waves
,”
Flow Turbul. Combust.
,
106
(
4
), pp.
1065
89
.
19.
Rezzag
,
T.
,
Burke
,
R.
, and
Ahmed
,
K.
,
2021
, “
A Kinematic Study of Individual Rotating Detonation Engine Waves Using K-Means Algorithm
,”
ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition
,
Virtual
,
June 7–11
.
20.
Iandola
,
F. N.
,
Han
,
S.
,
Moskewicz
,
M. W.
,
Ashraf
,
K.
,
Dally
,
W. J.
, and
Keutzer
,
K.
,
2017
, “
SqueezeNet: AlexNet-Level Accuracy With 50x Fewer Parameters and <0.5MB Model Size
,” pp.
1
13
. arXiv:1602.07360. https://arxiv.org/abs/1602.07360
21.
Redmon
,
J.
,
Divvala
,
S.
,
Girshick
,
R.
, and
Farhadi
,
A.
,
2016
, “
You Only Look Once: Unified, Real-Time Object Detection
,”
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
.
22.
Forestier
,
G.
,
Weber
,
J.
,
Idoumghar
,
L.
, and
Muller
,
P. A.
,
2019
, “
Deep Learning for Time Series Classification: A Review
,”
Data Min. Knowl. Discov.
,
33
(
4
), pp.
917
963
.
23.
Lines
,
J.
,
Taylor
,
S.
, and
Bagnall
,
A.
,
2018
, “
Time Series Classification With HIVE-COTE
,”
ACM Trans. Knowl. Discov. Data
,
12
(
5
), pp.
1
35
.
24.
Wang
,
Z.
,
Yan
,
W.
, and
Oates
,
T.
,
2017
, “
Time Series Classification From Scratch With Deep Neural Networks: A Strong Baseline
,”
Proceedings of the International Joint Conference on Neural Networks
,
Anchorage, AK
,
May 14–19
.
25.
Görner
,
M.
,
2020
, “
Modern Convnets, SqueezeNet, With Keras and TPUs
,” https://codelabs.developers.google.com/codelabs/keras-flowers-squeezenet/#0, Accessed March 3, 2020.
26.
Brophy
,
C. M.
, and
Codoni
,
J.
,
2019
, “
Experimental Performance Characterization of an RDE Using Equivalent Available Pressure
,”
AIAA Propulsion and Energy 2019 Forum
,
Indianapolis, IN
,
Aug. 19–22
.
27.
PyPylon: Python Wrapper for the Basler Pylon Camera Software Suite
” 2022, https://github.com/basler/pypylon
28.
Cladé
,
P.
,
2010
, “
PyDAQmx: A Python Interface to the National Instruments DAQmx Driver
,” https://pythonhosted.org/PyDAQmx/
29.
Zahn
,
A.
,
Knight
,
E.
,
Anand
,
V.
,
Jodele
,
J.
, and
Gutmark
,
E. J.
,
2018
, “
Examination of Counter-Rotating Detonation Waves Using Cross-Correlation
,”
2018 Joint Propulsion Conference
,
Cincinnati, OH
,
July 9–11
.
30.
Bohon
,
M.
,
Bluemner
,
R.
,
Paschereit
,
P. O.
, and
Gutmark
,
E. J.
,
2018
, “
Cross-Correlation as a Tool for Measuring RDC Wave Speed, Direction, and Complexity
,”
2018 Joint Propulsion Conference
,
Cincinnati, OH
,
July 9–11
.
31.
Chapman
,
D. L.
,
1899
, “
On the Rate of Explosion in Gases
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
47
(
284
), pp.
90
104
.
You do not currently have access to this content.