Abstract
As rotating detonation engines (RDEs) progress in maturity, the importance of monitoring advancements toward development of active control becomes more critical. Experimental RDE data processing at time scales which satisfy real-time diagnostics will likely require the use of machine learning. This study aims to develop and deploy a novel real-time monitoring technique capable of determining detonation wave number, direction, frequency, and individual wave speeds throughout experimental RDE operational windows. To do so, the diagnostic integrates image classification by a convolutional neural network (CNN) and ionization current signal analysis. Wave mode identification through single-image CNN classification bypasses the need to evaluate sequential images and offers instantaneous identification of the wave mode present in the RDE annulus. Real-time processing speeds are achieved due to low data volumes required by the methodology, namely one short-exposure image and a short window of sensor data to generate each diagnostic output. The diagnostic acquires live data using a modified experimental setup alongside Pylon and PyDAQmx libraries within a python data acquisition environment. Lab-deployed diagnostic results are presented across varying wave modes, operating conditions, and data quality, currently executed at 3–4 Hz with a variety of iteration speed optimization options to be considered as future work. These speeds exceed that of conventional techniques and offer a proven structure for real-time RDE monitoring. The demonstrated ability to analyze detonation wave presence and behavior during RDE operation will certainly play a vital role in the development of RDE active control, necessary for RDE technology maturation toward industrial integration.