Abstract

The objective of the present work is to find out the optimal mass flux of two common refrigerants, R32 and R410A, undergoing boiling in an evaporator tube based on the entropy generation minimization approach. An entropy generation model is developed for two-phase boiling flow based on the drift flux approach. The distinct terms for entropy generation due to heat transfer and pressure drop are developed. The optimal solutions of the present model under a practical range of parametric conditions are compared with that obtained from the existing homogeneous and separated flow-based model. Analysis reveals that increasing the evaporator diameter and heat flux increases the optimal mass flux at minimum entropy generation for both refrigerants. On the other hand, increasing the evaporator length decreases the optimal mass flux. It is observed that the optimal mass flux data for all parametric conditions deviate within 10–15% on the positive and negative sides for drift flux and homogeneous models, respectively, compared to separate flow model. The present analysis also reveals that the overall deviation of data of the drift flux model and homogeneous flow model indicates a standard deviation of 1.95–1.98%, respectively.

References

1.
Bejan
,
A.
,
2016
, “Entropy Generation Minimization,”
Advanced Engineering Thermodynamics
, 4th ed.,
John Wiley & Sons
,
New York
, pp.
531
600
.
2.
Bejan
,
A.
,
1996
, “
Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite Time Processes
,”
J. Appl. Phys.
,
79
(
3
), pp.
1191
1218
.
3.
Pussoli
,
B. F.
,
Barbosa Jr
,
J. R.
,
da Silva
,
L. W.
, and
Kaviany
,
M.
,
2012
, “
Optimization of Peripheral Finned-Tube Evaporators Using Entropy Generation Minimization
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7838
7846
.
4.
Öztop
,
H. F.
,
Şahin
,
A. Z.
, and
Dağtekin
,
İ.
,
2004
, “
Entropy Generation Through Hexagonal Cross-Sectional Duct for Constant Wall Temperature in Laminar Flow
,”
Int. J. Energy Res.
,
28
(
8
), pp.
725
737
.
5.
Hermes
,
C. J. L.
,
de Lima e Silva
,
W.
, and
de Castro
,
F. A. G.
,
2012
, “
Thermal-Hydraulic Design of Fan-Supplied Tube-Fin Condensers for Refrigeration Cassettes Aimed at Minimum Entropy Generation
,”
Appl. Therm. Eng.
,
36
, pp.
307
313
.
6.
Keklikcioglu
,
O.
, and
Ozceyhan
,
V.
,
2017
, “
Entropy Generation Analysis for a Circular Tube With Equilateral Triangle Cross Sectioned Coiled-Wire Inserts
,”
Energy
,
139
, pp.
65
75
.
7.
Jankowski
,
T. A.
,
2009
, “
Minimizing Entropy Generation in Internal Flows by Adjusting the Shape of the Cross-Section
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3439
3445
.
8.
Ezeora
,
O.
,
2008
, “
Entropy Generation Analysis and Optimum Tube Length of Two-Phase Flow Evaporator Tube
,”
Proceedings of the International Refrigeration and Air Conditioning Conference
,
West Lafayette, IN
,
July 14–17
.
9.
Liu
,
L.
,
Liu
,
D.
, and
Huang
,
N.
,
2021
, “
Entropy Generation for Negative Frictional Pressure Drop in Vertical Slug and Churn Flows
,”
Entropy
,
23
(
2
), p.
156
.
10.
Ibáñez
,
G.
,
López
,
A.
,
Pantoja
,
J.
,
Moreira
,
J.
, and
Reyes
,
J. A.
,
2013
, “
Optimum Slip Flow Based on the Minimization of Entropy Generation in Parallel Plate Microchannels
,”
Energy
,
50
, pp.
143
149
.
11.
See
,
Y. S.
, and
Leong
,
K. C.
,
2020
, “
Entropy Generation for Flow Boiling on a Single Semi-Circular Minichannel
,”
Int. J. Heat Mass Transfer
,
154
, p.
119689
.
12.
Thomas
,
S.
,
Ajith Kumar
,
G.
,
Sahoo
,
S. S.
, and
Varghese
,
S. M.
,
2018
, “
Entropy Generation Analysis for Forced Convection Boiling in Absorber Tubes of Linear Fresnel Reflector Solar Thermal System
,”
Therm. Sci.
,
24
(
2A
), pp.
735
743
.
13.
Revellin
,
R.
,
Lips
,
S.
,
Khandekar
,
S.
, and
Bonjour
,
J.
,
2009
, “
Local Entropy Generation for Saturated Two-Phase Flow
,”
Energy
,
34
(
9
), pp.
1113
1121
.
14.
Revellin
,
R.
, and
Bonjour
,
J.
,
2011
, “
Entropy Generation During Flow Boiling of Pure Refrigerant and Refrigerant–Oil Mixture
,”
Int. J. Refrig.
,
34
(
4
), pp.
1040
1047
.
15.
Revellin
,
R.
,
Lips
,
S.
,
Neveu
,
P.
, and
Bonjour
,
J.
,
2012
, “
A Comprehensive Non-Equilibrium Thermodynamic Analysis Applied to a Vapor–Liquid Two-Phase Flow of a Pure Fluid
,”
Int. J. Multiphase Flow
,
42
, pp.
184
193
.
16.
Abdous
,
M. A.
,
Saffari
,
H.
,
Barzegar Avval
,
H.
, and
Khoshzat
,
M.
,
2016
, “
The Study of Entropy Generation During Flow Boiling in a Micro-Fin Tube
,”
Int. J. Refrig.
,
68
, pp.
76
93
.
17.
Abdous
,
M. A.
,
Saffari
,
H.
,
Avval
,
H. B.
, and
Khoshzat
,
M.
,
2015
, “
Investigation of Entropy Generation in a Helically Coiled Tube in Flow Boiling Condition Under a Constant Heat Flux
,”
Int. J. Refrig.
,
60
, pp.
217
233
.
18.
Hossain
,
M. N.
,
2021
, “
Thermal Modeling, Analysis, and Design of Natural Circulation Boiler
,”
Ph.D. thesis
,
Jadavpur University
,
Kolkata
.
19.
Hossain
,
M. N.
,
Ghosh
,
K.
, and
Manna
,
N. K.
,
2022
, “
Effect of Axially Varying Heat Flux on Thermo-Hydraulic Characteristics and Circulation Ratio of Riser Tubes of Natural Circulation Boiler
,”
Energy
,
244
, p.
123158
.
20.
Ishii
,
M.
, and
Hibiki
,
T.
,
2010
, “One-Dimensional Drift-Flux Model,”
Thermo-Fluid Dynamics of Two-Phase Flow
,
Springer
,
New York
, pp.
397
436
.
21.
Wallis
,
G. B.
,
1969
,
One-Dimensional Two-Phase Flow
,
McGraw Hill Publication
,
New York
.
22.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation
, 3rd ed.,
Oxford Science Publication, Clarendon Press
,
Oxford
.
23.
Ishii
,
M.
,
1977
, “One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes,” Argonne National Laboratory, Report No. ANL-77-47.
24.
Hibiki
,
T.
, and
Ishii
,
M.
,
2003
, “
One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes
,”
Int. J. Heat Mass Transfer
,
46
(
25
), pp.
4935
4948
.
25.
Hibiki
,
T.
, and
Ishii
,
M.
,
2006
,
Thermo-Fluid Dynamics of Two-Phase Flow
,
Springer
,
New York
.
26.
Zou
,
L.
,
Zhao
,
H.
, and
Zhang
,
H.
,
2016
, “
Numerical Implementation, Verification and Validation of Two-Phase Flow Four-Equation Drift Flux Model With Jacobian-Free Newton–Krylov Method
,”
Ann. Nucl. Energy
,
87
(
2
), pp.
707
719
.
27.
Zuber
,
N.
,
Staub
,
F. W.
,
Bijwaard
,
G.
, and
Kroeger
,
P. G.
,
1967
, “Steady State and Transient Void Fraction in Two-Phase Flow Systems,” GEAP Report 5417.
28.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlations of Data for Isothermal Two-Phase, Two-Component Flow in a Pipe
,”
Chem. Eng. Prog.
,
45
, pp.
39
48
.
29.
Nayak
,
A. K.
,
Dubey
,
P.
,
Chavan
,
D. N.
, and
Vijayan
,
P. K.
,
2007
, “
Study on the Stability Behaviour of Two-Phase Natural Circulation Systems Using a Four-Equation Drift Flux Model
,”
Nucl. Eng. Des.
,
237
(
4
), pp.
386
398
.
30.
Idsinga
,
W.
,
1967
, “
An Assessment of Two-Phase Pressure Drop Correlations forSteam Water System
,” Naval Architect and Master of Science in Mechanical Engineering Thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
31.
Hossain
,
M. N.
,
Ghosh
,
K.
, and
Manna
,
N. K.
,
2021
, “
A Two Phase Flow Model for Thermal Design of the Riser-Downcomer System Pertaining to a 600 MW Subcritical Boiler
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
1
), p.
011021
.
32.
Hossain
,
M. N.
,
Ghosh
,
K.
, and
Manna
,
N. K.
,
2020
, “
A Multiphase Model for Determination of Minimum Circulation Ratio of Natural Circulation Boiler for a Wide Range of Pressure
,”
Int. J. Heat Mass Transfer
,
150
, p.
119293
.
33.
Hossain
,
M. N.
,
Ghosh
,
K.
, and
Manna
,
N. K.
,
2020
, “
Two-Phase Thermo-Hydraulic Model of a 210 MW Thermal Power Plant Boiler for Designing the Riser-Downcomer Circuit
,”
Therm. Sci. Eng. Prog.
,
18
, p.
100537
.
34.
Hossain
,
M. N.
,
Ghosh
,
K.
, and
Manna
,
N. K.
,
2019
, “
Thermo-Geometric Design Proposition of a Small Unit Two-Phase Thermosyphon Steam Boiler: Municipal Waste Fired Boiler (MWFB)
,”
Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference
,
IIT Roorkee, India
,
Dec. 28–31
, pp.
227
232
.
35.
Xing
,
D.
,
Yan
,
C.
,
Ma
,
X.
, and
Sun
,
L.
,
2014
, “
Effects of Void Fraction Correlations on Pressure Gradient Separation of Air–Water Two-Phase Flow in Vertical Mini Rectangular Ducts
,”
Prog. Nucl. Energy
,
70
, pp.
84
90
.
36.
Rouhani
,
S. Z.
, and
Axelsson
,
E.
,
1970
, “
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
383
393
.
37.
Wojtan
,
L.
,
Ursenbacher
,
T.
, and
Thome
,
J. R.
,
2005
, “
Investigation of Flow Boiling In Horizontal Tubes: Part I—A New Diabatic Two-Phase Flow Pattern Map
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2955
2969
.
38.
Mori
,
H.
,
Yoshida
,
S.
,
Ohishi
,
K.
, and
Kokimoto
,
Y.
,
2000
, “
Dryout Quality and Post Dryout Heat Transfer Coefficient in Horizontal Evaporator Tubes
,”
Proceedings of 3rd European Thermal Sciences Conference
, pp.
839
844
.
39.
Kutateladze
,
S. S.
,
1948
, “
On the Transition to Film Boiling Under Natural Convection
,”
Kotloturbostroenie
,
3
(
10
), pp.
10
12
.
40.
Kattan
,
N.
,
Thome
,
J. R.
, and
Favrat
,
D.
,
1998
, “
Flow Boiling in Horizontal Tubes. Part 1: Development of a Diabatic Twophase Flow Pattern Map
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
1
), pp.
140
147
.
41.
Biberg
,
D.
,
1999
, “
An Explicit Approximation for the Wetted Angle in Two-Phase Stratified Pipe Flow
,”
Can. J. Chem. Eng.
,
77
(
6
), pp.
1221
1224
.
42.
Wojtan
,
L.
,
Ursenbacher
,
T.
, and
Thome
,
J. R.
,
2005
, “
Investigation of Flow Boiling in Horizontal Tubes: Part II—Development of a New Heat Transfer Model for Stratified-Wavy, Dryout, and Mist Flow Regimes
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2970
2985
.
43.
Kattan
,
N.
,
Thome
,
J. R.
, and
Favrat
,
D.
,
1998
, “
Flow Boiling in Horizontal Tubes. Part 3: Development of a New Heat Transfer Model Based on Flow Patterns
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
1
), pp.
156
165
.
44.
Bhatti
,
M. S.
, and
Shah
,
R. K.
,
1987
, “Turbulent and Transition Flow Convective Heat Transfer in Ducts,”
Handbook of Single-Phase Heat Transfer
,
Wiley
,
New York
.
45.
Thome
,
J. R.
,
Hajal
,
J. E. L.
, and
Cavallini
,
A.
,
2003
, “
Condensation in Horizontal Tubes, Part 2: New Heat Transfer Model Based on Flow Regimes
,”
Int. J. Heat Mass Transfer
,
46
(
18
), pp.
3365
3387
.
46.
Ali
,
H.
, and
Alam
,
S. S.
,
1992
, “
Circulation Rates in Thermosiphon Reboiler
,”
Int. J. Heat Fluid Flow
,
13
(
1
), pp.
86
92
.
47.
Qiu
,
J.
,
Zhang
,
H.
,
Yu
,
X.
,
Qi
,
Y.
,
Lou
,
J.
, and
Wang
,
X.
,
2015
, “
Experimental Investigation of Flow Boiling Heat Transfer and Pressure Drops Characteristic of R1234ze(E), R600a, and a Mixture of R1234ze(E)/R32 in a Horizontal Smooth Tube
,”
Adv. Mech. Eng.
,
7
(
9
), p.
168781401560631
.
48.
da Silva Lima
,
R. J.
,
Quibén
,
J. M.
, and
Thome
,
J. R.
,
2009
, “
Flow Boiling in Horizontal Smooth Tubes: New Heat Transfer Results for R-134a at Three Saturation Temperatures
,”
Appl. Therm. Eng.
,
29
(
7
), pp.
1289
1298
.
You do not currently have access to this content.