Abstract

To fulfill the requirement of multi-refrigeration temperature, multi-target-temperature techniques are increasing research interests for industrial and commercial applications. Taking forward the previous research keeping in mind the electric power saving, a novel vapor compression-absorption multi-target-temperature cascade (VCAMTTS) system is proposed, in which NH3-H2O pair is used as vapor absorption section in the high-temperature circuit whereas two out of three refrigerant R717, R410A, and R134a are used in two lower circuits results in three possible configurations as NH3-H2O/R717 + R410A, NH3-H2O/R410A + R134a, and NH3-H2O/R134a + R717. This detailed analysis is based on the selection of the best configuration, investigating these on every aspect of energy, exergy, and economy (EEE). The whole investigation revolves around the parameters such as coefficient of performance (COP), exergy efficiency, and their sensitivity due to change of evaporator temperature and refrigerating capacity distribution ratio, exergy-economic factor, and product cost rate. Based on its best thermodynamic and thermal-economic performance, NH3-H2O/R410A + R134a (NHRARa) system can be a better option for multi-target-temperature refrigeration applications. Further, from the thermoeconomic analysis the optimum COP, exergy efficiency, and minimum cost obtained are about 0.3378, 8.29%, and 24.19 $/h, respectively.

References

1.
Gado
,
M. G.
,
Ookawara
,
S.
,
Nada
,
S.
, and
El-Sharkawy
,
I. I.
,
2021
, “
Hybrid Sorption-Vapor Compression Cooling Systems: A Comprehensive Overview
,”
Renewable Sustainable Energy Rev.
,
143
(
6
), p.
110912
.
2.
She
,
X.
,
Cong
,
L.
,
Nie
,
B.
,
Leng
,
G.
,
Peng
,
H.
,
Chen
,
Y.
,
Zhang
,
X.
,
Wen
,
T.
,
Yang
,
H.
, and
Luo
,
Y.
,
2018
, “
Energy-Efficient and -Economic Technologies for Air Conditioning With Vapor Compression Refrigeration: A Comprehensive Review
,”
Appl. Energy
,
232
(
12
), pp.
157
186
.
3.
Goldstein
,
E. A.
,
Raman
,
A. P.
, and
Fan
,
S.
,
2017
, “
Sub-Ambient Non-Evaporative Fluid Cooling With the Sky
,”
Nat. Energy
,
2
(
9
), pp.
1
7
.
4.
Nawaz
,
K.
, and
Ally
,
M. R.
,
2019
, “
Options for Low-Global-Warming-Potential and Natural Refrigerants Part 2: Performance of Refrigerants and Systemic Irreversibilities
,”
Int. J. Refrig.
,
106
(
10
), pp.
213
224
.
5.
Mota-Babiloni
,
A.
,
Mastani Joybari
,
M.
,
Navarro-Esbrí
,
J.
,
Mateu-Royo
,
C.
,
Barragán-Cervera
,
Á
,
Amat-Albuixech
,
M.
, and
Molés
,
F.
,
2020
, “
Ultralow-Temperature Refrigeration Systems: Configurations and Refrigerants to Reduce the Environmental Impact
,”
Int. J. Refrig.
,
111
(
3
), pp.
147
158
.
6.
Cimsit
,
C.
, and
Ozturk
,
I. T.
,
2012
, “
Analysis of Compression–Absorption Cascade Refrigeration Cycles
,”
Appl. Therm. Eng.
,
40
(
7
), pp.
311
317
.
7.
Cimsit
,
C.
,
Ozturk
,
I. T.
, and
Kincay
,
O.
,
2015
, “
Thermoeconomic Optimization of LiBr/H2O-R134a Compression-Absorption Cascade Refrigeration Cycle
,”
Appl. Therm. Eng.
,
76
(
2
), pp.
105
115
.
8.
Fernández-Seara
,
J.
,
Sieres
,
J.
, and
Vázquez
,
M.
,
2006
, “
Compression–Absorption Cascade Refrigeration System
,”
Appl. Therm. Eng.
,
26
(
5–6
), pp.
502
512
.
9.
Aminyavari
,
M.
,
Najafi
,
B.
,
Shirazi
,
A.
, and
Rinaldi
,
F.
,
2014
, “
Exergetic, Economic and Environmental (3E) Analyses, and Multi-objective Optimization of a CO2/NH3 Cascade Refrigeration System
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
42
50
.
10.
Holmberg
,
H.
,
Ruohonen
,
P.
, and
Ahtila
,
P.
,
2009
, “
Determination of the Real Loss of Power for a Condensing and a Backpressure Turbine by Means of Second Law Analysis
,”
Entropy
,
11
(
4
), pp.
702
712
.
11.
Colorado
,
D.
, and
Velázquez
,
V. M.
,
2013
, “
Exergy Analysis of a Compression-Absorption Cascade System for Refrigeration
,”
Int. J. Energy Res.
,
37
(
14
), pp.
1851
1865
.
12.
Misra
,
R. D.
,
Sahoo
,
P. K.
,
Sahoo
,
S.
, and
Gupta
,
A.
,
2003
, “
Thermoeconomic Optimization of a Single Effect Water/LiBr Vapour Absorption Refrigeration System
,”
Int. J. Refrig.
,
26
(
2
), pp.
158
169
.
13.
Misra
,
R. D.
,
Sahoo
,
P. K.
, and
Gupta
,
A.
,
2006
, “
Thermoeconomic Evaluation and Optimization of an Aqua-Ammonia Vapour-Absorption Refrigeration System
,”
Int. J. Refrig.
,
29
(
1
), pp.
47
59
.
14.
Wu
,
C.
,
Wang
,
S.
,
Feng
,
X.
, and
Li
,
J.
,
2017
, “
Energy, Exergy and Exergoeconomic Analyses of a Combined Supercritical CO2 Recompression Brayton/Absorption Refrigeration Cycle
,”
Energy Convers. Manage.
,
148
(
9
), pp.
360
377
.
15.
Arpagaus
,
C.
,
Bless
,
F.
,
Schiffmann
,
J.
, and
Bertsch
,
S. S.
,
2016
, “
Multi-temperature Heat Pumps: A Literature Review
,”
Int. J. Refrig.
,
69
(
9
), pp.
437
465
.
16.
Zhu
,
Y.-D.
,
Peng
,
Z.-R.
,
Wang
,
G.-B.
, and
Zhang
,
X.-R.
,
2021
, “
Thermodynamic Analysis of a Novel Multi-Target-Temperature Cascade Cycle for Refrigeration
,”
Energy Convers. Manage.
,
243
(
9
), p.
114380
.
17.
Wu
,
W.
,
Wang
,
B.
,
Shi
,
W.
, and
Li
,
X.
,
2014
, “
An Overview of Ammonia-Based Absorption Chillers and Heat Pumps
,”
Renewable Sustainable Energy Rev.
,
31
(
3
), pp.
681
707
.
18.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M. J.
,
1995
,
Thermal Design and Optimization
,
John Wiley and Sons Inc
,
New York
, p.
333
.
19.
Ahrendts
,
J.
,
1980
, “
Reference States
,”
Energy
,
5
(
8–9
), pp.
666
677
.
You do not currently have access to this content.