Abstract

The main aim of the article is intended to design an effective Plate-Fin Heat Exchanger (PFHX) with composite materials such as SS316 + copper and SS304 + Flyash in a counterflow type. These are brazed together with the method of salt bath brazing and vacuum brazing. The study presents the analytical formulation of heat transfer and fluid flow in PFHX design to predict the enhancement of heat transfer and overall heat transfer coefficient, finite difference method is suggested for analyzing the hot and cold fluids. Moreover, Quantum particle swarm optimization with the radial basis function is proposed for accurate prediction of heat transfer enhancement. The findings of the research demonstrate that the design structure of PFHX with the composite materials is analyzed using a microscopic approach and eroded test. The proposed study is performed using various types of coolants namely MFC, ECSTAR, and TFC anti-freeze coolants with water, and the thermophysical properties of the coolants are also analyzed. The findings demonstrate that the variation between the experimental and theoretical results is less than 3.26%, this indicates that the proposed method is effective for heat exchanger design and the optimization algorithm is more feasible than the analytical results. Hence, the outcome of this study offers a better prediction analysis of heat transfer enhancement using PFHX.

References

1.
Pandya
,
N. S.
,
Shah
,
H.
,
Molana
,
M.
, and
Tiwari
,
A. K.
,
2020
, “
Heat Transfer Enhancement With Nanofluids in Plate Heat Exchangers: A Comprehensive Review
,”
Eur. J. Mech. B Fluids
,
81
(
1
), pp.
173
190
.
2.
Maghrabie
,
H. M.
,
Elsaid
,
K.
,
Sayed
,
E. T.
,
Abdelkareem
,
M. A.
,
Wilberforce
,
T.
,
Ramadan
,
M.
, and
Olabie
,
A. G.
,
2021
, “
Intensification of Heat Exchanger Performance Utilizing Nanofluids
,”
Int. J. Thermofluid.
,
10
(
1
), p.
100071
.
3.
Yu
,
C.
,
Xue
,
X.
,
Shi
,
K.
, and
Shao
,
M.
,
2020
, “
A Three-Dimensional Numerical and Multi-Objective Optimal Design of Wavy Plate-Fins Heat Exchangers
,”
Processes
,
9
(
1
), p.
9
.
4.
Saleh
,
B.
, and
Sundar
,
S. L.
,
2021
, “
Experimental Study on Heat Transfer, Friction Factor, Entropy and Exergy Efficiency Analyses of a Corrugated Plate Heat Exchanger Using Ni/Water Nanofluids
,”
Int. J. Therm. Sci.
,
165
(
1
), p.
106935
.
5.
Pei
,
B.
,
Chen
,
Z.
,
Li
,
F.
, and
Bai
,
B.
,
2019
, “
Flow and Heat Transfer of Supercritical CO2 in the Honeycomb Ultra-Compact Plate Heat Exchanger
,”
J. Supercrit Fluids
,
148
(
1
), pp.
1
8
.
6.
Jiang
,
Q.
,
Zhuang
,
M.
,
Zhang
,
Q.
,
Zhu
,
Z.
,
Geng
,
M.
,
Sheng
,
L.
, and
Zhu
,
P.
,
2018
, “
Experimental Study on the Thermal-Hydraulic Performance of Plate-Fin Heat Exchangers for Cryogenic Applications
,”
Cryogenics
,
91
(
1
), pp.
58
67
.
7.
Sadeghianjahromi
,
A.
,
Kheradmand
,
S.
,
Nemati
,
H.
, and
Wang
,
C. C.
,
2020
, “
Heat Transfer Enhancement of Wavy Fin-and-Tube Heat Exchangers via Innovative Compound Designs
,”
Int. J. Therm. Sci.
,
149
(
1
), p.
106211
.
8.
Pandya
,
N. S.
,
Shah
,
H.
,
Molana
,
M.
, and
Tiwari
,
A. K.
,
2020
, “
Heat Transfer Enhancement With Nanofluids in Plate Heat Exchangers: A Comprehensive Review
,”
Eur. J. Mech. B Fluids
,
81
(
1
), pp.
173
190
.
9.
Hong
,
Y.
,
Du
,
J.
,
Wang
,
S.
,
Huang
,
S. M.
, and
Ye
,
W. B.
,
2018
, “
Heat Transfer and Fluid Flow Behaviours in a Tube With Modified Wire Coils
,”
Int. J. Heat Mass Transfer
,
124
(
1
), pp.
1347
1360
.
10.
Tang
,
L.
,
Du
,
X.
,
Pan
,
J.
, and
Sundén
,
B.
,
2019
, “
Air Inlet Angle Influence on the Air-Side Heat Transfer and Flow Friction Characteristics of a Finned Oval Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
145
(
1
), p.
118702
.
11.
Zhang
,
J.
,
Liu
,
J.
,
Zhang
,
L.
,
Liu
,
Q.
, and
Wu
,
Q.
,
2019
, “
Air-Side Heat Transfer Characteristics Under Wet Conditions at Lower Ambient Pressure of Fin-and-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
142
(
1
), p.
118439
.
12.
Zahrani
,
S. A.
,
Islam
,
M. S.
,
Xu
,
F.
, and
Saha
,
S. C.
,
2020
, “
Thermal Performance Investigation in a Novel Corrugated Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
148
(
1
), p.
119095
.
13.
Xie
,
J.
, and
Lee
,
H. M.
,
2022
, “
Thermo-Hydraulic Performance of a Fin-and-Tube Heat Exchanger With Differently Configured Curved-Rectangular Vortex Generators
,”
Heat Transfer Eng.
,
43
(
1
), pp.
63
82
.
14.
Nascimento
,
C. A. R. D.
,
Mariani
,
V. C.
, and
Coelho
,
L. D. S.
,
2020
, “
Integrative Numerical Modeling and Thermodynamic Optimal Design of Counter-Flow Plate-Fin Heat Exchanger Applying Neural Networks
,”
Int. J. Heat Mass Transfer
,
159
(
1
), p.
120097
.
15.
Zhang
,
J. N.
,
Cheng
,
M.
,
Ding
,
Y. D.
,
Fu
,
Q.
, and
Chen
,
Z. Y.
,
2019
, “
Influence of Geometric Parameters on the Gas-Side Heat Transfer and Pressure Drop Characteristics of Three-Dimensional Finned Tube
,”
Int. J. Heat Mass Transfer
,
133
(
1
), pp.
192
202
.
16.
Abbas
,
A.
,
Lee
,
H.
,
Sengupta
,
A.
, and
Wang
,
C. C.
,
2020
, “
Numerical Investigation of Thermal and Hydraulic Performance of Shell and Plate Heat Exchanger
,”
Appl. Therm. Eng.
,
167
(
1
), p.
114705
.
17.
Huang
,
B.
,
Li
,
H.
,
Xia
,
S.
, and
Xu
,
T.
,
2020
, “
Experimental Investigation of the Flow and Heat Transfer Performance in Micro-Channel Heat Exchangers With Cavities
,”
Int. J. Heat Mass Transfer
,
159
(
1
), p.
120075
.
18.
Abeykoon
,
C.
,
2020
, “
Compact Heat Exchangers-Design and Optimization With CFD
,”
Int. J. Heat Mass Transfer
,
146
(
1
), p.
118766
.
19.
Bezaatpour
,
M.
, and
Rostamzadeh
,
H.
,
2020
, “
Heat Transfer Enhancement of a Fin-and-Tube Compact Heat Exchanger by Employing Magnetite Ferrofluid Flow and an External Magnetic Field
,”
Appl. Therm. Eng.
,
164
(
1
), p.
114462
.
20.
Gaikwad
,
S.N.
,
Bandgar
,
R.T.
,
Patil
,
M.R.
,
Babar
,
A.C.
, and
Shaikh
,
A.S.
,
2021
, “
Performance Analysis of Heat Exchanger Operated With Al2o3 Nanofluid by Using Copper as Tube Material
,”
Int. Res. J. Mod. Eng. Technol. Sci.
,
3
(
2
), pp.
186
193
.
21.
Zheng
,
X.
,
Luo
,
X.
,
Luo
,
J.
,
Chen
,
J.
,
Liang
,
Y.
,
Yang
,
Z.
,
Chen
,
Y.
, and
Wang
,
H.
,
2020
, “
Experimental Investigation of Operation Behavior of Plate Heat Exchangers and Their Influences on Organic Rankine Cycle Performance
,”
Energy Convers. Manage.
,
207
(
1
), p.
112528
.
22.
Said
,
Z.
,
Rahman
,
S. M. A.
,
Assad
,
E. H. M.
, and
Alami
,
A. H.
,
2019
, “
Heat Transfer Enhancement and Life Cycle Analysis of a Shell-and-Tube Heat Exchanger Using Stable CuO/Water Nanofluid
,”
Sustainable Energy Technol. Asses.
,
31
(
1
), pp.
306
317
.
23.
Hao
,
J. H.
,
Chen
,
Q.
,
Ren
,
J. X.
,
Zhang
,
M. Q.
, and
Ai
,
J.
,
2019
, “
An Experimental Study on the Offset-Strip Fin Geometry Optimization of a Plate-Fin Heat Exchanger Based on the Heat Current Model
,”
Appl. Therm. Eng.
,
154
, pp.
111
119
.
24.
Keklikcioglu
,
O.
,
Dagdevir
,
T.
, and
Ozceyhan
,
V.
,
2020
, “
Second Law Analysis of a Mixture of Ethylene Glycol/Water Flow in Modified Heat Exchanger Tube by Passive Heat Transfer Enhancement Technique
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
1307
1320
.
25.
Ravi
,
R.
,
Pachamuthu
,
S.
, and
Kasinathan
,
P.
,
2020
, “
Computational and Experimental Investigation on Effective Utilization of Waste Heat From Diesel Engine Exhaust Using a Fin Protracted Heat Exchanger
,”
Energy
,
200
, p.
117489
.
You do not currently have access to this content.