Abstract

Computational fluid dynamics (CFD) simulation provides full-field variables, enabling a better understanding of flow physics and associated heat transfer. However, assumptions involved in CFD simulation should not affect flow and temperature fields and their correspondence to practical situations. Therefore, the present study analyzed the importance of temperature-dependent fluid properties in a sealed container during thermal treatment. We compared the thermal behavior trends of temperature-dependent fluid properties with those obtained from constant properties for two carboxyl methyl cellulose (CMC) solution concentrations. The results show that natural convection occurs earlier in the temperature-dependent fluid properties, which leads to attaining a desired level of sterility within a shorter time than the constant properties of the fluid. The variations in the viscosity with the shear rate and temperature played essential roles in affecting thermal behavior. So, results indicate that temperature-dependent non-Newtonian fluid must be considered to avoid miscalculating heating time in conventional thermal treatment. Besides, the thermal trends of both cases approach pure conduction when CMC solutions’ apparent viscosity increases.

References

1.
Gokhale
,
S. V.
, and
Lele
,
S. S.
,
2012
, “
Retort Process Modeling for Indian Traditional Foods
,”
J. Food Sci. Technol.
,
51
(
11
), pp.
3134
3143
.
2.
Chen
,
C. R.
, and
Ramaswamy
,
H. S.
,
2002
, “
Modeling and Optimization of Constant Retort Temperature (CRT) Thermal Processing Using Coupled Neural Networks and Genetic Algorithms
,”
J. Food Process Eng.
,
25
(
5
), pp.
351
379
.
3.
Dincer
,
I.
,
Varlik
,
C.
, and
Gun
,
H.
,
1993
, “
Heat Transfer Rate Variation in a Canned Food During Sterilisation
,”
Int. Commun. Heat Mass Transfer
,
20
(
2
), pp.
301
309
.
4.
Erdogdu
,
F.
,
Uyar
,
R.
, and
Palazoglu
,
T. K.
,
2010
, “
Experimental Comparison of Natural Convection and Conduction Heat Transfer
,”
J. Food Process Eng.
,
33
(
S1
), pp.
85
100
.
5.
Rawajfeh
,
K.
,
Albaali
,
A. G.
,
Saidan
,
M.
, and
Abureden
,
S.
,
2013
, “
Modeling of Natural Convection Heating and Biochemical Changes in a Viscous Liquid Canned Food Using Computational Fluid Dynamics
,”
Int. J. Food Sci. Nutr.
,
3
(
4
), pp.
71
79
.
6.
Bhuvaneswari
,
E.
, and
Anandharamakrishnan
,
C.
,
2014
, “
Heat Transfer Analysis of Pasteurization of Bottled Beer in a Tunnel Pasteurizer Using Computational Fluid Dynamics
,”
Innov. Food Sci. Emerg. Technol.
,
23
, pp.
156
163
.
7.
Jacob
,
K. M.
,
Subhasisa
,
R.
, and
Sukanta
,
K. D.
,
2021
, “
Relative Importance of Temperature-Dependent Properties in Non-Newtonian Natural Convection Around Curved Surfaces
,”
Int. Commun. Heat Mass Transfer
,
124
, p.
105263
.
8.
Simpson
,
R.
, and
Teixeira
,
A. A.
,
2008
, “Optimization of Canned Food Processing,”
Optimization in Food Engineering
,
F
Erdogdu
, ed.,
CRC Press
,
Boca Raton, FL
, pp.
561
596
.
9.
Ashwini
,
K.
,
Bhattacharya
,
M.
, and
Blaylock
,
J.
,
1990
, “
Numerical Simulation of Natural Convection Heating of Canned Thick Viscous Liquid Food Products
,”
J. Food Sci.
,
55
(
5
), pp.
1403
1411
.
10.
Cho
,
W. I.
,
Park
,
E. J.
,
Cheon
,
H. S.
, and
Chung
,
M.-S.
,
2015
, “
The Study of Heat Penetration of Kimchi Soup on Stationary and Rotary Retorts
,”
Prev. Nutr. Food Sci.
,
20
(
1
), pp.
60
66
.
11.
Holdsworth
,
S. D.
, and
Simpson
,
R.
,
2016
, “Thermal Processing of Packaged Foods,”
Food Engineering Series
, 3rd ed.,
G. V.
Barbosa-Cánovas
, Washington State University, USA, p.
383
.
12.
Borah
,
R.
,
Sanjay
,
G.
,
Lubhani
,
M.
, and
Chhabra
,
R. P.
,
2020
, “
Heating of Liquid Foods in Cans: Effects of Can Geometry, Orientation, and Food Rheology
,”
J. Food Process Eng.
,
43
(
7
), pp.
1
24
.
13.
Abdul-Ghani
,
A. G.
,
Farid
,
M. M.
,
Chen
,
X. D.
, and
Richards
,
P.
,
1999
, “
Numerical Simulation of Natural Convection Heating of Canned Food by Computational Fluid Dynamics
,”
J. Food Eng.
,
41
(
1
), pp.
55
64
.
14.
Calderon-Alvarado
,
M. P.
,
Alvarado-Orozco
,
J. M.
,
Herrera-Hernandez
,
E. C.
,
Martınez-Gonzalez
,
G. M.
,
Miranda-Lopez
,
R.
, and
Jimenez-Islas
,
H.
,
2015
, “
Effect of Two Viscosity Models on Lethality Estimation in Sterilization of Liquid Canned Foods
,”
Food Sci. Technol. Int.
,
22
(
6
), pp.
1
20
.
15.
Rao
,
M. A.
,
Cooley
,
H. J.
,
Anantheswaran
,
R. C.
, and
Ennis
,
R. W.
,
1985
, “
Convective Heat Transfer to Canned Liquid Foods in a Steritort
,”
J. Food Sci.
,
50
(
1
), pp.
150
154
.
16.
Kumar
,
A.
, and
Battacharya
,
M.
,
1991
, “
Transient Temperature and Velocity Profiles in a Canned Non-Newtonian Liquid Food During Sterilization in a Still-Cook Retort
,”
Int. J. Heat Mass Transfer
,
34
(
4/5
), pp.
1083
1096
.
17.
Yang
,
W. H.
, and
Rao
,
M. A.
,
1998
, “
Transient Natural Convection Heat Transfer to Starch Dispersion in a Cylindrical Container: Numerical Solution and Experiment
,”
J. Food Eng.
,
36
(
4
), pp.
395
415
.
18.
Noboru
,
S.
,
Jian Wen
,
T.
,
Chang Min
,
L.
, and
Manabu
,
W.
,
2004
, “
Predicting Temperature During the Thermal Processing of Canned High-Viscosity Liquid Food
,”
Food Sci. Technol. Res.
,
10
(
1
), pp.
79
85
.
19.
Farid
,
M.
, and
Ghani
,
A. G. A.
,
2004
, “
A New Computational Technique for the Estimation of Sterilization Time in Canned Food
,”
Chem. Eng. Process.
,
43
(
4
), pp.
523
531
.
20.
Kannan
,
A.
, and
Sandaka
,
P. C. G.
,
2008
, “
Heat Transfer Analysis of Canned Food Sterilization in a Still Retort
,”
J. Food Eng.
,
88
(
2
), pp.
213
228
.
21.
Padmavati
,
R.
, and
Anandharamakrishnan
,
C.
,
2013
, “
Computational Fluid Dynamics Modeling of the Thermal Processing of Canned Pineapple Slices and Titbits
,”
Food Bioprocess Technol.
,
6
(
4
), pp.
882
895
.
22.
Lee
,
M. G.
, and
Yoon
,
W. B.
,
2014
, “
Developing an Effective Method to Determine the Deviation of F Value Upon the Location of a Still Can During Convection Heating Using CFD and Subzones
,”
J. Food Process. Eng.
,
37
(
5
), pp.
493
505
.
23.
Chuenchumsap
,
B.
,
Asavasanti
,
S.
, and
Tangduangdee
,
C.
,
2019
, “
Influence of Temperature Dependence of Viscosity on Thermal Process Establishment Using CMC-Based Liquid Food Model
,”
IOP Conf. Ser. Earth Environ. Sci.
,
301
(
1
), p.
012058
.
24.
Mishra
,
P.
,
Patel
,
S. A.
,
Trivedi
,
M.
, and
Chhabra
,
R. P.
,
2019
, “
Effect of Power-Law Fluid Behavior on Nusselt Number of a Circular Disk in the Forced Convection Regime
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
4
), p.
041701
.
25.
Thilakavathi
,
R.
, and
Suresh
,
K.
,
2022
, “
Influence of Viscosity on the Thermal Behavior of Fluids in a Sealed Can
,”
Alex. Eng. J.
,
61
(
10
), pp.
7833
7842
.
26.
Suresh
,
K.
,
2012
, “
Hydrodynamic and Heat Transfer Studies on Laminar Flow Over a Confined Sphere
,”
Ph.D. thesis
,
Indian Institute of Technology, Madras
,
Chennai, India
.
27.
Roberto
,
A. L. M.
,
Moraga
,
N. O.
, and
Riquelme
,
J.
,
2013
, “
Unsteady 2D Conjugate Natural Non-Newtonian Convection With Non-Newtonian Liquid Sterilization in Square Cavity
,”
Int. J. Heat Mass Transfer
,
61
, pp.
73
81
.
28.
Datta
,
A. K.
, and
Teixeira
,
A. A.
,
1988
, “
Numerically Predicted Transient Temperature and Velocity Profiles During Natural Convection Heating of Canned Liquid Foods
,”
J. Food Sci.
,
53
(
1
), pp.
191
195
.
29.
Naim
,
F.
,
Zareifard
,
M. R.
,
Zhu
,
S.
,
Huizing
,
R. H.
,
Grabowski
,
S.
, and
Marcotte
,
M.
,
2008
, “
Combined Effects of Heat, Nisin and Acidification on the Inactivation of Clostridium Sporogenes Spores in Carrot–Alginate Particles: From Kinetics to Process Validation
,”
Food Microbiol.
,
25
(
7
), pp.
936
941
.
30.
Jung
,
A.
, and
Fryer
,
P. J.
,
1999
, “
Optimizing the Quality of Safe Food: Computational Modelling of a Continuous Sterilisation Process
,”
Chem. Eng. Sci.
,
54
(
6
), pp.
717
730
.
31.
Fryer
,
P. J.
, and
Bakalis
,
S.
,
2012
, “
Heat Transfer to Foods: Ensuring Safety and Creating Microstructure
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
3
), p.
031021
.
You do not currently have access to this content.