Abstract

The current study reports the modeling and experimental study of a novel bank-type earth air heat exchanger for both hot and humid and hot and dry weather of Ferozepur. The air has been flown through the bank in the induced mode in which uniform flow is achieved through all parallel pipes. The experimental work was followed by systematically designing experiments using the reduced quartic model of the full factorial designing technique. The earth’s undisturbed temperature was 28 °C at a depth of 2 m below the earth’s surface at the place of study. The present study is better than the earlier reported shapes because the dry bulb temperature has moved down to 29.8 °C. The two-factor as well as three-factor interactions were studied. The desirability for hot and dry weather ranges from 0.813 to 1.00, and for hot and humid weather ranges from 0.603 to 0.736.

References

1.
Zajch
,
A.
,
Gough
,
W. A.
, and
Chiesa
,
G.
,
2020
, “
Earth–Air Heat Exchanger Geo-Climatic Suitability for Projected Climate Change Scenarios in the Americas
,”
Sustainability (Swit.)
,
12
(
24
), p.
10613
.
2.
Chiesa
,
G.
,
2017
, “
Climate-Potential of Earth-To-Air Heat Exchangers
,”
Energy Procedia
,
122
(
1
), pp.
517
522
.
3.
Chiesa
,
G.
, and
Zajch
,
A.
,
2019
, “
Geo-Climatic Applicability of Earth-to-Air Heat Exchangers in North America
,”
Energy Build.
,
202
(
1
), p.
109332
.
4.
Rodríguez-Vázquez
,
M.
,
Xamán
,
J.
,
Chávez
,
Y.
,
Hernández-Pérez
,
I.
, and
Simá
,
E.
,
2020
, “
Thermal Potential of a Geothermal Earth-to-Air Heat Exchanger in Six Climatic Conditions of México
,”
Mech. Ind.
,
21
(
3
), p.
308
.
5.
Chiesa
,
G.
, and
Zajch
,
A.
,
2020
, “
Contrasting Climate-Based Approaches and Building Simulations for the Investigation of Earth-to-Air Heat Exchanger (EAHE) Cooling Sensitivity to Building Dimensions and Future Climate Scenarios in North America
,”
Energy Build.
,
227
(
1
), p.
110410
.
6.
Xia
,
Z.
,
Liu
,
X.
, and
Gu
,
J.
,
2019
, “
Laboratory Investigation and Modelling of the Thermal-Mechanical Properties of Soil in Shallow Mineralized Groundwater Area
,”
Geofluids
,
2019
(
1
), pp.
1
21
.
7.
Xia
,
Z.
,
Chen
,
R. P.
, and
Kang
,
X.
,
2019
, “
Laboratory Characterization and Modelling of the Thermal-Mechanical Properties of Binary Soil Mixtures
,”
Soils Found.
,
59
(
6
), pp.
2167
2179
.
8.
Bertermann
,
D.
,
Bernardi
,
A.
,
Pockelé
,
L.
,
Galgaro
,
A.
,
Cultrera
,
M.
,
de Carli
,
M.
, and
Müller
,
J.
,
2018
, “
European Project ‘Cheap-GSHPs’: Installation and Monitoring of Newly Designed Helicoidal Ground Source Heat Exchanger on the German Test Site
,”
Environ. Earth Sci.
,
77
(
5
), pp.
1
13
.
9.
Alkhalaf
,
H.
,
Ibrahim
,
M. N.
, and
Yan
,
W.
,
2018
, “
Numerical Study About Improving the Proficiency of an Earth Air Heat Exchanger System (EAHE) Employing Ground Cover Material
,”
J. Clean Energy Technol.
,
6
(
2
), pp.
106
111
.
10.
Cuny
,
M.
,
Lin
,
J.
,
Siroux
,
M.
, and
Fond
,
C.
,
2019
, “
Influence of an Improved Surrounding Soil on the Energy Performance and the Design Length of Earth-Air Heat Exchanger
,”
Appl. Therm. Eng.
,
162
(
1
), p.
114320
.
11.
Cuny
,
M.
,
Lin
,
J.
,
Siroux
,
M.
,
Magnenet
,
V.
, and
Fond
,
C.
,
2018
, “
Influence of Coating Soil Types on the Energy of Earth-Air Heat Exchanger
,”
Energy Build.
,
158
(
1
), pp.
1000
1012
.
12.
Singh
,
B.
,
Asati
,
A. K.
, and
Kumar
,
R.
,
2021
, “
Evaluation of the Cooling Potential of Earth Air Heat Exchanger Using Concrete Pipes
,”
Int. J. Thermophys.
,
42
(
2
), pp.
1
19
.
13.
Kharbouch
,
A.
,
Maakoul
,
A. E.
,
Bakhouya
,
M.
, and
Ouadghiri
,
D. E.
,
2018
, “
Modeling and Performance Evaluation of an Air-Soil Exchange System in Energy Efficient Buildings
,”
Proceedings of the 2018 Sixth International Renewable and Sustainable Energy Conference, IRSEC 2018
,
Rabat, Morrocco
,
Dec. 5–8
, pp.
1
6
.
14.
Sakhri
,
N.
,
Menni
,
Y.
, and
Ameur
,
H.
,
2020
, “
Effect of the Pipe Material and Burying Depth on the Thermal Efficiency of Earth-to-Air Heat Exchangers
,”
Case Stud. Chem. Environ. Eng.
,
2
(
1
), p.
100013
.
15.
Wei
,
H.
,
Yang
,
D.
,
Wang
,
J.
, and
Du
,
J.
,
2020
, “
Field Experiments on the Cooling Capability of Earth-to-Air Heat Exchangers in Hot and Humid Climate
,”
Appl. Energy
,
276
(
1
), p.
115493
.
16.
Sakhri
,
N.
,
Menni
,
Y.
, and
Ameur
,
H.
,
2020
, “
Experimental Investigation of the Performance of Earth-to-Air Heat Exchangers in Arid Environments
,”
J. Arid Environ.
,
180
(
1
), p.
104215
.
17.
Cullin
,
J. R.
,
Spitler
,
J. D.
,
Montagud
,
C.
,
Ruiz-Calvo
,
F.
,
Rees
,
S. J.
,
Naicker
,
S. S.
,
Konečný
,
P.
, and
Southard
,
L. E.
,
2015
, “
Validation of Vertical Ground Heat Exchanger Design Methodologies
,”
Sci. Technol. Built Environ.
,
21
(
2
), pp.
137
149
.
18.
Zajch
,
A.
, and
Gough
,
W. A.
,
2021
, “
Seasonal Sensitivity to Atmospheric and Ground Surface Temperature Changes of an Open Earth-Air Heat Exchanger in Canadian Climates
,”
Geothermics
,
89
(
1
), p.
101914
.
19.
Hermes
,
V. F.
,
Ramalho
,
J. V. A.
,
Rocha
,
L. A. O.
,
Dos Santos
,
E. D.
,
Marques
,
W. C.
,
Costi
,
J.
,
Rodrigues
,
M. K.
, and
Isoldi
,
L. A.
,
2020
, “
Further Realistic Annual Simulations of Earth-Air Heat Exchangers Installations in a Coastal City
,”
Sustainable Energy Technol. Assess
,
37
(
1
), p.
100603
.
20.
Rosa
,
N.
,
Soares
,
N.
,
Costa
,
J. J.
,
Santos
,
P.
, and
Gervásio
,
H.
,
2020
, “
Assessment of an Earth-Air Heat Exchanger (EAHE) System for Residential Buildings in Warm-Summer Mediterranean Climate
,”
Sustainable Energy Technol. Assess
,
38
(
1
), p.
100649
.
21.
Mahach
,
H.
, and
Benhamou
,
B.
,
2021
, “
Extensive Parametric Study of Cooling Performance of an Earth-to-Air Heat Exchanger in Hot Semi-Arid Climate
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
3
), p.
031006
.
22.
Hamdane
,
S.
,
Mahboub
,
C.
, and
Moummi
,
A.
,
2020
, “
Numerical Approach to Predict the Outlet Temperature of Earth-to-Air-Heat-Exchanger
,”
Ther. Sci. Eng. Prog.
,
21
(
1
), p.
100806
.
23.
Gan
,
G.
,
2017
, “
Impacts of Dynamic Interactions on the Predicted Thermal Performance of Earth-Air Heat Exchangers for Preheating, Cooling and Ventilation of Buildings
,”
Int. J. Low Carbon Technol.
,
12
(
2
), pp.
208
223
.
24.
Gan
,
G.
,
2017
, “
Dynamic Thermal Simulation of Horizontal Ground Heat Exchangers for Renewable Heating and Ventilation of Buildings
,”
Renewable Energy
,
103
(
c
), pp.
361
371
.
25.
Amanowicz
,
Ł
, and
Wojtkowiak
,
J.
,
2017
, “
Experimental Investigation and CFD Simulation of Multi-pipe Earth-to-Air Heat Exchangers (EAHEs) Flow Performance
,”
E3S Web of Conferences.
,
Polanica-Zdrój, Poland
,
Sept. 13–15
.
26.
Zeng
,
C.
,
Yuan
,
Y.
,
Xiang
,
B.
,
Cao
,
X.
,
Zhang
,
Z.
, and
Sun
,
L.
,
2019
, “
Thermal and Infrared Camouflage Performance of Earth-Air Heat Exchanger for Cooling an Underground Diesel Generator Room for Protective Engineering
,”
Sustainable Cities Soc.
,
47
(
1
), p.
101437
.
27.
Rosa
,
N.
,
Santos
,
P.
,
Costa
,
J. J.
, and
Gervásio
,
H.
,
2018
, “
Modelling and Performance Analysis of an Earth-to-Air Heat Exchanger in a Pilot Installation
,”
J. Build. Phys.
,
42
(
3
), pp.
259
287
.
28.
Ronge
,
D.
,
Kadam
,
V.
,
Shende
,
S.
,
Kate
,
P.
,
Waghmare
,
V.
, and
Patil
,
O.
,
2020
, “
Design of an Earth Air Heat Exchanger System for Space Cooling in Hot and Dry Climate of Pandharpur, India
,”
Aegaeum J.
,
8
(
6
), pp.
1594
1602
.
29.
Bhusare
,
H.
,
Agrawal
,
K. K.
,
Misra
,
R.
, and
Agrawal
,
G. D.
,
2019
, “
Techno-Economic Analysis of Earth Air Heat Exchanger System for Building Cooling in Hot and Dry Climate of Rajasthan (India)
,”
Int. J. Sci. Eng. Res.
,
10
(
5
), pp.
23
28
.
30.
Nayak
,
D. S.
,
Narwal
,
K.
, and
Chaudhary
,
R.
,
2016
, “
Mathematical Modeling and Experimental Study for Summer Performance of Earth Air Heat Exchanger Integrated With a Solar Greenhouse
,”
IOSR J. Environ. Sci. Toxicol. Food Technol.
,
10
(
09
), pp.
75
86
.
31.
Ghosal
,
M. K.
,
Tiwari
,
G. N.
, and
Srivastava
,
N. S. L.
,
2004
, “
Thermal Modeling of a Greenhouse With an Integrated Earth to Air Heat Exchanger: An Experimental Validation
,”
Energy Build.
,
36
(
3
), pp.
219
227
.
32.
Benhamza
,
M. E. G.
,
Brima
,
A.
,
Houda
,
S.
, and
Moummi
,
N.
,
2017
, “
An Experimental and a Numerical Study of Horizontal Earth-Air Heat Exchanger in a Hot Climate
,”
Int. J. Sustainable Eng.
,
10
(
2
), pp.
82
89
.
33.
Baglivo
,
C.
,
D’Agostino
,
D.
, and
Congedo
,
P. M.
,
2018
, “
Design of a Ventilation System Coupled With a Horizontal Air-Ground Heat Exchanger (HAGHE) for a Residential Building in a Warm Climate
,”
Energies
,
11
(
8
), p.
2122
.
34.
Qi
,
D.
,
Li
,
A.
,
Li
,
S.
, and
Zhao
,
C.
,
2021
, “
Comparative Analysis of Earth to Air Heat Exchanger Configurations Based on Uniformity and Thermal Performance
,”
Appl. Therm. Eng.
,
183
(
1
), pp.
1
10
.
35.
Amanowicz
,
Ł.
,
2018
, “
Influence of Geometrical Parameters on the Flow Characteristics of Multi-pipe Earth-to-Air Heat Exchangers—Experimental and CFD Investigations
,”
Appl. Energy
,
226
(
May
), pp.
849
861
.
36.
Afrand
,
M.
,
Shahsavar
,
A.
,
Sardari
,
P. T.
,
Sopian
,
K.
, and
Salehipour
,
H.
,
2019
, “
Energy and Exergy Analysis of Two Novel Hybrid Solar Photovoltaic Geothermal Energy Systems Incorporating a Building Integrated Photovoltaic Thermal System and an Earth Air Heat Exchanger System
,”
Sol. Energy
,
188
, pp.
83
95
.
37.
Dehina
,
K.
,
Mokhtari
,
A. M.
, and
Souyri
,
B.
,
2020
, “
Energy Modelling of a New Co-current Coaxial Earth—Water to Air-Heat Exchanger. Case Study: Heating of House in Biskra—Algeria
,”
Geothermics
,
87
(
1
), p.
101836
.
38.
Sakhri
,
N.
,
Menni
,
Y.
,
Chamkha
,
A. J.
,
Lorenzini
,
G.
,
Ameur
,
H.
,
Kaid
,
N.
, and
Bensafi
,
M.
,
2020
, “
Experimental Study of an Earth-to-Air Heat Exchanger Coupled to the Solar Chimney for Heating and Cooling Applications in Arid Regions
,”
J. Therm. Anal. Calorim.
,
145
(
6
), pp.
3349
3358
.
39.
Ghaith
,
F. A.
, and
Ur Razzaq
,
H.
,
2018
, “
Thermal Performance of Earth-Air Heat Exchanger Systems for Cooling Applications in Residential Buildings
,”
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 6A-144113
,
Pittsbergh, PA
,
Nov. 9–15
.
40.
Ghaith
,
F. A.
, and
Alsouda
,
F. J.
,
2017
, “
Enhancing the Performance of the Building’s Vapor Compression Air Cooling System Using Earth-Air Heat Exchanger
,”
ASME 2017 11th International Conference on Energy Sustainability, ES 2017, Collocated With the ASME 2017 Power Conference Joint With ICOPE 2017, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 201
,
Charlotte, NC
,
June 26–30
.
41.
Romańska-Zapała
,
A.
,
Furtak
,
M.
, and
Dechnik
,
M.
,
2017
, “
Cooperation of Horizontal Ground Heat Exchanger With the Ventilation Unit During Summer-Case Study
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
245
(
5
), pp.
0
8
.
42.
Jakhar
,
S.
,
Misra
,
R.
,
Bansal
,
V.
, and
Soni
,
M. S.
,
2015
, “
Thermal Performance Investigation of Earth Air Tunnel Heat Exchanger Coupled With a Solar Air Heating Duct for Northwestern India
,”
Energy Build.
,
87
, pp.
360
369
.
43.
Menhoudj
,
S.
,
Mokhtari
,
A. M.
,
Benzaama
,
M. H.
,
Maalouf
,
C.
,
Lachi
,
M.
, and
Makhlouf
,
M.
,
2018
, “
Study of the Energy Performance of an Earth—Air Heat Exchanger for Refreshing Buildings in Algeria
,”
Energy Build.
,
158
, pp.
1602
1612
.
44.
Ghafoor
,
D. Z.
, and
Khdir
,
Y. K.
,
2020
, “
Experimental Investigation of Earth Tube Heat Exchanger (ETHE) for Controlled Ventilation in Erbil
,”
Proceedings of the Sixth International Engineering Conference “Sustainable Technology and Development,” IEC 2020.
,
Erbil, Iraq
,
Feb. 26–27
.
45.
Rangarajan
,
V.
,
Singh
,
R.
, and
Kaushal
,
P.
,
2019
, “
Model Development and Performance Evaluation of an Earth Air Heat Exchanger Under a Constrained Urban Environment
,”
Model. Earth Syst. Environ.
,
5
(
1
), pp.
143
158
.
46.
Belloufi
,
Y.
,
Brima
,
A.
,
Zerouali
,
S.
,
Atmani
,
R.
,
Aissaoui
,
F.
,
Rouag
,
A.
, and
Moummi
,
N.
,
2017
, “
Numerical and Experimental Investigation on the Transient Behavior of an Earth Air Heat Exchanger in Continuous Operation Mode
,”
Int. J. Heat Technol.
,
35
(
2
), pp.
279
288
.
47.
Lekhal
,
M. C.
,
Benzaama
,
M. H.
,
Kindinis
,
A.
,
Mokhtari
,
A. M.
, and
Belarbi
,
R.
,
2021
, “
Effect of Geo-Climatic Conditions and Pipe Material on Heating Performance of Earth-Air Heat Exchangers
,”
Renewable Energy
,
163
(
1
), pp.
22
40
.
48.
Serageldin
,
A. A.
,
Abdeen
,
A.
,
Ahmed
,
M. M. S.
,
Radwan
,
A.
,
Shmroukh
,
A. N.
, and
Ookawara
,
S.
,
2020
, “
Solar Chimney Combined With Earth-to-Air Heat Exchanger for Passive Cooling of Residential Buildings in Hot Areas
,”
Sol. Energy
,
206
, pp.
145
162
.
49.
Liu
,
Z.
,
Yu
,
Z. J.
,
Yang
,
T.
,
Li
,
S.
,
Mankibi
,
M. E.
,
Roccamena
,
L.
,
Qin
,
D.
, and
Zhang
,
G.
,
2019
, “
Designing and Evaluating a New Earth-to-Air Heat Exchanger System in Hot Summer and Cold Winter Areas
,”
Energy Procedia
,
158
(
1
), pp.
6087
6092
.
50.
Li
,
H.
,
Ni
,
L.
,
Yao
,
Y.
, and
Sun
,
C.
,
2019
, “
Experimental Investigation on the Cooling Performance of an Earth to Air Heat Exchanger (EAHE) Equipped With an Irrigation System to Adjust Soil Moisture
,”
Energy Build.
,
196
(
1
), pp.
280
292
.
51.
Pakari
,
A.
, and
Ghani
,
S.
,
2019
, “
Performance Evaluation of a Near-Surface Earth-to-Air Heat Exchanger With Short-Grass Ground Cover: An Experimental Study
,”
Energy Convers. Manage.
,
201
(
1
), p.
112163
.
52.
Pintoro
,
A.
,
Manik
,
T. U. H. S. G.
,
Sitorus
,
T. B.
, and
Sihombing
,
E. A.
,
2019
, “
The Experimental Study and Numerical of Pipe Finned As a Earth-Air Heat Exchangers
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
505
(
1
), p.
012059
.
You do not currently have access to this content.